Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hybrid detector monitors alpha, beta, and gamma radiation simultaneously

09.11.2011
By combining three layers of detection into one new device, a team of researchers from Japan has proposed a new way to monitor radiation levels at power plant accident sites.

The device would be more economical that using different devices to measure different types of radiation, and could limit the exposure times of clean-up workers by taking three measurements simultaneously. Radioactive decay produces three flavors of emissions: alpha, beta, and gamma.

Alpha particles comprise 2 neutrons and 2 protons. Because of their large mass and relatively slow speed, alpha particles are the least penetrating of the three types of radiation, and can be stopped by a sheet of paper. Beta particles are electrons that can travel farther than alpha particles, but not as far as high-energy gamma photons, the third type of radiation.

The researchers took advantage of the different penetrating properties of the three types of radiation to design their device. Their new radiation detector has three scintillators, which are sheets of material that light up when hit by radiation. Alpha particles strike only the first scintillator, beta particles travel on to the second scintillator, and gamma photons make it all the way through to the third scintillator.

The scintillators were then coupled to a photomultiplier tube, a device that converts the light pulses into electrical current. Because the shape of a light pulse differs depending on which type of radiation produced it (alpha particles produce sharp peaks, gamma particles more broad pulses), the device could distinguish between the different radiation types and produce counts for all three simultaneously. The new device could be used for a range of applications in which scientists might need to determine the types of radioactive material present, the researchers write.

Article: "Development of an alpha/beta/gamma detector for radiation monitoring" is accepted for publication in Review of Scientific Instruments.

Authors: Seiichi Yamamoto (1) and Jun Hatazawa (2).

(1) Kobe City College of Technology, Kobe, Japan
(2) Osaka University Graduate School of Medicine, Osaka, Japan

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>