Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Zooms in on a Space Oddity

11.01.2011
One of the strangest space objects ever seen is being scrutinized by the penetrating vision of NASA's Hubble Space Telescope. A mysterious, glowing, green blob of gas is floating in space near a spiral galaxy. Hubble uncovered delicate filaments of gas and a pocket of young star clusters in the giant object, which is the size of our Milky Way galaxy.

The Hubble revelations are the latest finds in an ongoing probe of Hanny's Voorwerp (Hanny's Object in Dutch), named for Hanny van Arkel, the Dutch teacher who discovered the ghostly structure in 2007 while participating in the online Galaxy Zoo project.

Galaxy Zoo enlists the public to help classify more than a million galaxies catalogued in the Sloan Digital Sky Survey. The project has expanded to include the Hubble Zoo, in which the public is asked to assess tens of thousands of galaxies in deep imagery from the Hubble Space Telescope.

In the sharpest view yet of Hanny's Voorwerp, Hubble's Wide Field Camera 3 and Advanced Camera for Surveys have uncovered star birth in a region of the green object that faces the spiral galaxy IC 2497, located about 650 millionlight-years from Earth. Radio observations have shown an outflow of gas arising from the galaxy's core. The new Hubble images reveal that the galaxy's gas is interacting with a small region of Hanny's Voorwerp, which is collapsing and forming stars. The youngest stars are a couple of million years old.

"The star clusters are localized, confined to an area that is over a few thousand light-years wide," explains astronomer William Keel of the University of Alabama in Tuscaloosa, leader of the Hubble study. "The region may have been churning out stars for several million years. They are so dim that they have previously been lost in the brilliant light of the surrounding gas."

Recent X-ray observations have revealed why Hanny's Voorwerp caught the eye of astronomers. The galaxy's rambunctious core produced a quasar, a powerful light beacon powered by a black hole. The quasar shot a broad beam of light in Hanny's Voorwerp's direction, illuminating the gas cloud and making it a space oddity. Its bright green color is from glowing oxygen.

"We just missed catching the quasar, because it turned off no more than 200,000 years ago, so what we're seeing is the afterglow from the quasar," Keel says. "This implies that it might flicker on and off, which is typical of quasars, but we've never seen such a dramatic change happen so rapidly."

The quasar's outburst also may have cast a shadow on the blob. This feature gives the illusion of a gaping hole about 20,000 light-years wide in Hanny's Voorwerp. Hubble reveals sharp edges around the apparent opening, suggesting that an object close to the quasar may have blocked some of the light and projected a shadow on Hanny's Voorwerp. This phenomenon is similar to a fly on a movie projector lens casting a shadow on a movie screen.

Radio studies have revealed that Hanny's Voorwerp is not just an island gas cloud floating in space. The glowing blob is part of a long, twisting rope of gas, or tidal tail, about 300,000 light-years long that wraps around the galaxy. The only optically visible part of the rope is Hanny's Voorwerp. The illuminated object is so huge that it stretches from 44,000 light-years to 136,000 light-years from the galaxy's core.

The quasar, the outflow of gas that instigated the star birth, and the long, gaseous tidal tail point to a rough life for IC 2497.

"The evidence suggests that IC 2497 may have merged with another galaxy about a billion years ago," Keel explains. "The Hubble images show in exquisite detail that the spiral arms are twisted, so the galaxy hasn't completely settled down."

In Keel's scenario, the merger expelled the long streamer of gas from the galaxy and funneled gas and stars into the center, which fed the black hole. The engorged black hole then powered the quasar, which launched two cones of light. One light beam illuminated part of the tidal tail, now called Hanny's Voorwerp.

About a million years ago, shock waves produced glowing gas near the galaxy's core and blasted it outward. The glowing gas is seen only in Hubble images and spectra, Keel says. The outburst may have triggered star formation in Hanny's Voorwerp. Less than 200,000 years ago, the quasar dropped in brightness by 100 times or more, leaving an ordinary-looking core.

New images of the galaxy's dusty core from Hubble's Space Telescope Imaging Spectrograph show an expanding bubble of gas blown out of one side of the core, perhaps evidence of the sputtering quasar's final gasps. The expanding ring of gas is still too small for ground-based telescopes to detect.

"This quasar may have been active for a few million years, which perhaps indicates that quasars blink on and off on timescales of millions of years, not the 100 million years that theory had suggested," Keel says. He added that the

quasar could light up again if more material is dumped around the black hole.

Keel is presenting his results on Jan. 10, 2011, at the American Astronomical Society meeting in Seattle, Wash.

For images and more information about Hanny's Voorwerp and spiral galaxy IC 2497, visit:

http://hubblesite.org/news/2011/01
http://www.nasa.gov/hubble
http://heritage.stsci.edu/2011/01
http://www.galaxyzoo.org
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Donna Weaver | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>