Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble views a bizarre cosmic quartet

18.06.2015

This new NASA/ESA Hubble Space Telescope image shows a gathering of four cosmic companions. This quartet forms part of a group of galaxies known as the Hickson Compact Group 16, or HCG 16 — a galaxy group bursting with dramatic star formation, tidal tails, galactic mergers and black holes.

This quartet is composed of (from left to right) NGC 839, NGC 838, NGC 835, and NGC 833 — four of the seven galaxies that make up the entire group. They shine brightly with their glowing golden centres and wispy tails of gas [1], set against a background dotted with much more distant galaxies.


This new NASA/ESA Hubble Space Telescope image shows four of the seven members of galaxy group HCG 16.

Credit: NASA, ESA, ESO

Compact groups represent some of the densest concentrations of galaxies known in the Universe, making them perfect laboratories for studying weird and wonderful phenomena. Hickson Compact Groups in particular, as classified by astronomer Paul Hickson in the 1980s, are surprisingly numerous, and are thought to contain an unusually high number of galaxies with strange properties and behaviours [2].

HCG 16 is certainly no exception. The galaxies within it are bursting with dramatic knots of star formation and intensely bright central regions. Within this single group, astronomers have found two LINERs, one Seyfert 2 galaxy and three starburst galaxies.

These three types of galaxy are all quite different, and can each help us to explore something different about the cosmos. Starbursts are dynamic galaxies that produce new stars at much greater rates than their peers. LINERs (Low-Ionisation Nuclear Emission-line Regions) contain heated gas at their cores, which spew out radiation. In this image NGC 839 is a LINER-type and luminous infrared galaxy and its companion NGC 838 is a LINER-type galaxy with lots of starburst activity and no central black hole.

The remaining galaxies, NGC 835 and NGC 833, are both Seyfert 2 galaxies which have incredibly luminous cores when observed at other wavelengths than in the visible light, and are home to active supermassive black holes.

The X-ray emission emanating from the black hole within NGC 833 (far right) is so high that it suggests the galaxy has been stripped of gas and dust by past interactions with other galaxies. It is not alone in having a violent history — the morphology of NGC 839 (far left) is likely due to a galactic merger in the recent past, and long tails of glowing gas can be seen stretching away from the galaxies on the right of the image.

This new image uses observations from Hubble's Wide Field Planetary Camera 2, combined with data from the ESO Multi-Mode Instrument installed on the European Southern Observatory’s New Technology Telescope in Chile. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestants Jean-Christophe Lambry and Marc Canale.

Notes


[1] A tidal tail is a thin, elongated region of stars and interstellar gas that extends into space from a galaxy. They are a result of the strong gravitational forces around interacting galaxies.


[2] Hubble has imaged several of these groups before, including HCG 31 (opo1008a), HCG 92 (heic0910i), HCG 59 (potw1004a), HCG 22 (potw1349a), HCG 7 (potw1132a), HCG 87 (opo9931a), and HCG 90 (heic0902a).

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

More information

Image credit: NASA, ESA, ESO, J. Charlton (The Pennsylvania State University)
Acknowledgements: Jean-Christophe Lambry, Marc Canale

Contacts

Mathias Jäger
ESA/Hubble Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

Mathias Jäger | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1514/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>