Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble Uncovers an Unusual Stellar Progenitor to a Supernova

Like a surveillance camera photographing the scene of a crime before it happened, NASA's Hubble Space Telescope has a priceless archival photo of the galaxy that contains a picture of the supernova 2005gl progenitor star as it appeared eight years before the star exploded.

NASA's Hubble Space Telescope has identified a star that was one million times brighter than the sun before it exploded as a supernova in 2005. According to current theories of stellar evolution, the star should not have self-destructed so early in its life.

"This might mean that we are fundamentally wrong about the evolution of massive stars, and that theories need revising," says Avishay Gal-Yam of the Weizmann Institute of Science, Rehovot, Israel.

The doomed star, which is estimated to have had about 100 times our sun's mass, was not mature enough, according to theory, to have evolved a massive iron core of nuclear fusion ash. This is the prerequisite for a core implosion that triggers a supernova blast.

The finding appears today in the online version of Nature Magazine.

The explosion, called supernova SN 2005gl, was seen in the barred-spiral galaxy NGC 266 on October 5, 2005. Pre-explosion pictures from the Hubble archive, taken in 1997, reveal the progenitor as a very luminous point source with an absolute visual magnitude of -10.3.

The progenitor was so bright that it probably belonged to a class of stars called Luminous Blue Variables (LBVs), "because no other type of star is as intrinsically brilliant," says Gal-Yam. As an LBV-class star evolves it sheds much of its mass through a violent stellar wind. Only at that point does it develop a large iron core and ultimately explodes as a core-collapse supernova.

Extremely massive and luminous stars topping 100 solar masses, such as Eta Carinae in our own Milky Way Galaxy, are expected to lose their entire hydrogen envelopes prior to their ultimate explosions as supernovae. "These observations demonstrate that many details in the evolution and fate of LBVs remain a mystery. We should continue to keep an eye on Eta Carinae – it may surprise us yet again," says supernova expert Mario Livio of the Space Telescope Science Institute, Baltimore, Md.

"The progenitor identification shows that, at least in some cases, massive stars explode before losing most of their hydrogen envelope, suggesting that the evolution of the core and the evolution of the envelope are less coupled than previously thought, a finding which may require a revision of stellar evolution theory," says co-author Douglas Leonard from San Diego State University, Calif.

One possibility is that the progenitor to SN 2005gl was really a pair of stars, a binary system that merged. This would have stoked nuclear reactions to brighten the star enormously, making it look more luminous and less evolved than it really is. "This also leaves open the question that there may be other mechanisms for triggering supernova explosions," says Gal-Yam. "We may be missing something very basic in understanding how a superluminous star goes through mass loss."

Gal-Yam reports that the observation revealed that only a small part of the star's mass was flung off in the explosion. Most of the material, says Gal-Yam, was drawn into the collapsing core that has probably become a black hole estimated to be at least 10 to 15 solar masses.

Gal-Yam and Leonard located the progenitor in archival images of NGC 266 taken in 1997. It was easily identifiable only because it is so superluminous. Only Hubble could clearly resolve it at such a great distance.

The team then used the Keck telescope to precisely locate the supernova on the outer arm of the galaxy. A follow-up observation with Hubble in 2007 unequivocally showed that the superluminous star was gone. To make sure the new observation was consistent with the 1997 archival image, the astronomers used the same Hubble camera used in 1997, the Wide Field Planetary Camera 2.

Finding archival images of stars before the stars exploded as supernovae isn't an easy task. Several other supernova progenitor candidates have been reported prior to the Hubble observation. The only other absolutely indisputable progenitor, however, was the blue supergiant progenitor to SN 1987A. In the case of SN 1987A, it was thought that the progenitor star was once a red supergiant and at a later stage evolved back to blue supergiant status. This led to a major reworking of supernova theory. The progenitor star observed by Gal-Yam is too massive to have gone through such an oscillation to the red giant stage, so yet another new explanation is required, he says.

For images and more information about the progenitor to SN 2005gl, visit:

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

STScI is an International Year of Astronomy 2009 (IYA 2009) program partner.

Ray Villard | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>