Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Uncovers Evidence for Extrasolar Planet Under Construction

17.06.2013
Nearly 900 extrasolar planets have been confirmed to date, but now for the first time astronomers think they are seeing compelling evidence for a planet under construction in an unlikely place, at a great distance from its diminutive red dwarf star.

The keen vision of NASA's Hubble Space Telescope has detected a mysterious gap in a vast protoplanetary disk of gas and dust swirling around the nearby star TW Hydrae, located 176 light-years away in the constellation Hydra (the Sea Serpent). The gap's presence is best explained as due to the effects of a growing, unseen planet that is gravitationally sweeping up material and carving out a lane in the disk, like a snow plow.

Researchers, led by John Debes of the Space Telescope Science Institute in Baltimore, Md., found the gap about 7.5 billion miles from the red dwarf star. If the putative planet orbited in our solar system, it would be roughly twice Pluto's distance from the Sun.

The suspected planet's wide orbit means that it is moving slowly around its host star. Finding the suspected planet in this orbit challenges current planet formation theories. The conventional planet-making recipe proposes that planets form over tens of millions of years from the slow but persistent buildup of dust, rocks, and gas as a budding planet picks up material from the surrounding disk. TW Hydrae, however, is only 8 million years old. There has not been enough time for a planet to grow through the slow accumulation of smaller debris. In fact, a planet at 7.5 billion miles from its star would take more than 200 times longer to form than Jupiter did at its distance from the Sun because of its much slower orbital speed and a deficiency of material in the disk.

An alternative planet-formation theory suggests that a piece of the disk becomes gravitationally unstable and collapses on itself. In this scenario, a planet could form more quickly, in just a few thousand years.

"If we can actually confirm that there's a planet there, we can connect its characteristics to measurements of the gap properties," Debes says. "That might add to planet formation theories as to how you can actually form a planet very far out. There's definitely a gap structure. We think it's probably a planet given the fact that the gap is sharp and circular."

What complicates the story is that the red dwarf star is only 55 percent the mass of our Sun. "It's so intriguing to see a system like this," Debes says. "This is the lowest-mass star for which we've observed a gap so far out."

The disk also lacks large dust grains in its outer regions. Observations from ALMA (the Atacama Large Millimeter Array) show that millimeter-sized (tenths-of-an-inch-sized) dust, roughly the size of a grain of sand, cuts off sharply at about 5.5 billion miles from the star, just short of the gap. The disk is 41 billion miles across.

"Typically, you need pebbles before you can have a planet. So, if there is a planet and there is no dust larger than a grain of sand farther out, that would be a huge challenge to traditional planet-formation models," Debes says.

The Hubble observations reveal that the gap, which is 1.9 billion miles wide, is not completely cleared out. The team suggests that if a planet exists, it is in the process of forming and not very massive. Based on the evidence, team member Hannah Jang-Condell at the University of Wyoming in Laramie estimates that the putative planet is 6 to 28 times more massive than Earth. Within this range lies a class of planets called super-Earths and ice giants. Such a small planet mass is also a challenge to direct-collapse planet-formation theories, which predict that clumps of material one to two times more massive than Jupiter can collapse to form a planet.

TW Hydrae has been a popular target with astronomers. The system is one of the closest examples of a face-on disk, giving astronomers an overhead view of the star's environment. Debes's team used Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) to observe the star in near-infrared light. The team then re-analyzed archival Hubble data, using more NICMOS images as well as optical and spectroscopic observations from the Space Telescope Imaging Spectrograph (STIS). Armed with these observations, they composed the most comprehensive view of the system in scattered light over many wavelengths.

When Debes accounted for the rate at which the disk dims from reflected starlight, the gap was highlighted. It was a feature that two previous Hubble studies had suspected but could not definitively confirm. These earlier observations noted an uneven brightness in the disk but did not identify it as a gap.

"When I first saw the gap structure, it just popped out like that," Debes says. "The fact that we see the gap at every wavelength tells you that it's a structural feature rather than an instrumental artifact or a feature of how the dust scatters light.

The team plans to use ALMA and NASA's upcoming James Webb Space Telescope, an infrared observatory set to launch in 2018, to study the system in more detail.

The team's paper will appear online on June 14 in The Astrophysical Journal.

For images, illustrations, and more information about TW Hydrae, visit:

http://hubblesite.org/news/2013/20

For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy Inc., in Washington.

Ray Villard | Newswise
Further information:
http://www.nasa.gov/hubble
http://www.stsci.edu

Further reports about: Extrasolar Hubble Hubble Space Telescope Hydra Jupiter NICMOS Planet STScI Space Telescope planet formation red dwarf

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>