Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble traces the halo of a galaxy more accurately than ever before

22.07.2014

An in-depth look at the giant elliptical galaxy Centaurus A

Astronomers using the NASA/ESA Hubble Space Telescope have probed the extreme outskirts of the stunning elliptical galaxy Centaurus A. The galaxy’s halo of stars has been found to extend much further from the galaxy’s centre than expected and the stars within this halo seem to be surprisingly rich in heavy elements. This is the most remote portion of an elliptical galaxy ever to have been explored.


Centaurus A halo

There is more to a galaxy than first meets the eye. Extending far beyond the bright glow of a galaxy's centre, the swirling spiral arms, or the elliptical fuzz, is an extra component: a dim halo of stars sprawling into space.

These expansive haloes are important components of a galaxy. The halo of our own galaxy, the Milky Way, preserves signatures of both its formation and evolution. Yet, we know very little about the haloes of galaxies beyond our own as their faint and spread-out nature makes exploring them more difficult. Astronomers have so far managed to detect very few starry haloes around other galaxies.

Now, by utilising the unique space-based location of the NASA/ESA Hubble Space Telescope and its sensitive Advanced Camera for Surveys and Wide Field Camera 3, a team of astronomers has probed the halo surrounding the prominent giant elliptical galaxy Centaurus A [1], also known as NGC 5128, to unprecedented distances. They have found that its halo spreads far further into space than expected and does so in an unexpected form.

"Tracing this much of a galaxy's halo gives us surprising insights into a galaxy's formation, evolution, and composition," says Marina Rejkuba of the European Southern Observatory in Garching, Germany, lead author of the new Hubble study. "We found more stars scattered in one direction than the other, giving the halo a lopsided shape — which we hadn't expected!"

Along the galaxy's length the astronomers probed out 25 times further than the galaxy's radius — mapping a region some 450 000 light-years across. For the width they explored along 295 000 light-years, 16 times further than its "effective radius" [2]. These are large distances if you consider that the main visible component of the Milky Way is around 120 000 light-years in diameter. In fact, the diameter of the halo probed by this team extends across 4 degrees in the sky — equivalent to eight times the apparent width of the Moon.

Alongside their unexpected uneven distribution, the stars within the halo also showed surprising properties relating to the proportion of elements heavier than hydrogen and helium found in the gas that makes up the stars. While the stars within the haloes of the Milky Way and other nearby spirals are generally low in heavy elements, the stars within Centaurus A's halo appear to be rich in heavy elements, even at the outermost locations explored.

"Even at these extreme distances, we still haven't reached the edge of Centaurus A's halo, nor have we detected the very oldest generation of stars," adds co-author Laura Greggio of INAF, Italy. "This aged generation is very important. The larger stars from it are responsible for manufacturing the heavy elements now found in the bulk of the galaxy's stars. And even though the large stars are long dead, the smaller stars of the generation still live on and could tell us a great deal."

The small quantity of heavy elements in the stellar haloes of large spiral galaxies like the Milky Way, is thought to originate from the way that the galaxies formed and evolved, slowly pulling in numerous small satellite galaxies and taking on their stars. For Centaurus A, the presence of stars rich in heavy elements in such remote locations suggests a single past merger with a large spiral galaxy. This event would have ejected stars from the spiral galaxy's disc and these are now seen as part of Centaurus A's outer halo.

"Measuring the amount of heavy elements in individual stars in a giant elliptical galaxy such as Centaurus A is uniquely the province of Hubble — we couldn't do it with any other telescope, and certainly not yet from the ground," adds Rejkuba. "These kinds of observations are fundamentally important to understanding the galaxies in the Universe around us."

These results are being published online in Astrophysical Journal on the 22 July and will appear in the 10 August 2014 issue.

Notes

[1] As it is relatively near to Earth, Centaurus A is prominent in our night sky and is well known for its striking and beautiful appearance (heic1110, opo9814e). To see more about this galaxy, see Hubblecast 46: A tour of Centaurus A.

[2] The effective radius of a galaxy, as referenced here, is the radius of the area in which half of the galaxy’s light is emitted. Astronomers use this effective radius rather than the full radius because the galaxy becomes faint and undefined at its outskirts.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of M. Rejkuba (European Southern Observatory, Germany; Excellence Cluster Universe, Germany), W. E. Harris (McMaster University, Canada), L. Greggio (INAF, Italy), G. L. H. Harris (University of Waterloo, Canada), H. Jerjen (Australian National University, Australia), O. A. Gonzalez (European Southern Observatory, Chile).

More information

Image credit: NASA, ESA & M. Rejkuba (European Southern Observatory)

Links

Contacts

Marina Rejkuba
European Southern Observatory
Garching bei München, Germany
Tel: +49 89 3200 6453
Email: mrejkuba@eso.org

Laura Greggio
INAF, Osservatorio Astronomico di Padova
Padova, Italy
Tel: +39 049 8293463
Cell: +39 347 73189089
Email: laura.greggio@oapd.inaf.it

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Cell: +44 7816291261
Email: gbladon@partner.eso.org

Georgia Bladon | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1415/

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>