Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Reveals Rogue Planetary Orbit for Fomalhaut b

11.01.2013
Newly released Hubble Space Telescope images of a vast debris disk encircling the nearby star Fomalhaut, and of a mysterious planet circling it, may provide forensic evidence of a titanic planetary disruption in the system.

Astronomers are surprised to find that the debris belt is wider than previously known, spanning a gulf of space from 14 billion miles to nearly 20 billion miles from the star. Even more surprisingly, the latest Hubble images have allowed a team of astronomers to calculate that the planet follows an unusual elliptical orbit that carries it on a potentially destructive path through the vast dust ring.


NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)

Rogue Planetary Orbit for Fomalhaut b This false-color composite image, taken with the Hubble Space Telescope, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere and produce various phenomena. The black circle at the center of the image blocks out the light from the bright star, allowing reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012.

The planet, called Fomalhaut b, swings as close to its star as 4.6 billion miles, and the outermost point of its orbit is 27 billion miles away from the star. The orbit was re-calculated from the newest Hubble observation made in 2012. "We are shocked -- Fomalhaut b probably passed three times closer to the star than we previously thought, and now it is zipping outward," said Paul Kalas of the University of California at Berkeley and the SETI Institute in Mountain View, Calif.

The Fomalhaut team led by Kalas considers this circumstantial evidence that there may be other planet-like bodies in the system that gravitationally disturbed Fomalhaut b to place it in such a highly eccentric orbit.

His team is presenting their finding on January 8 at the 221st meeting of the American Astronomical Society in Long Beach, Calif.

Among several scenarios to explain Fomalhaut b's 2,000-year-long orbit is the hypothesis that an as yet undiscovered planet gravitationally ejected Fomalhaut b from a position closer to the star, and sent it flying into an orbit that extends beyond the dust belt. "Hot Jupiters get tossed through scattering events, where one planet goes in and one gets thrown out. This could be the planet that gets thrown out," according to co-investigator Mark Clampin of NASA's Goddard Space Flight Center in Greenbelt, Md.

Hubble also found that the dust and ice belt encircling Fomalhaut (the star) has an apparent gap slicing across the belt. This might have been carved out by another undetected planet, researchers said. "Hubble's exquisite view of the dust belt shows irregularities that strongly motivate a search for other planets in the system," Kalas said.

"If its orbit lies in the same plane with the dust belt, then Fomalhaut b will intersect the belt around 2032 on the outbound leg of its orbit. During the crossing, icy and rocky debris in the belt could crash into the planet's atmosphere and create the type of cosmic fireworks seen when comet Shoemaker-Levy 9 crashed into Jupiter," Kalas said. "But if Fomalhaut b is not co-planar with the belt, we may not see anything at all except for a gradual dimming of Fomalhaut b as it travels farther and farther from the star," he explained.

Kalas hypothesized that Fomalhaut b's extreme orbit is a major clue in explaining why the planet is unusually bright in visible light but very dim in infrared light. The planet could be between the mass of Pluto and Jupiter, but the optical brightness possibly originates from a ring or shroud of dust around the planet, reflecting starlight. The dust is rapidly produced by satellites orbiting the planet, which suffer extreme erosion by impacts and gravitational stirring when Fomalhaut b enters into the planetary system after a millennium of deep freeze beyond the main belt. "An analogy can be found by looking at Saturn, which has a tenuous but very large dust ring produced when meteoroids hit the outer moon called Phoebe," Kalas said.

The team has also considered a different scenario where a hypothetical second dwarf planet suffered a catastrophic collision with Fomalhaut b. Kalas explained, "The collision scenario would provide a solution as to why Fomalhaut (the star) has a narrow outer belt linked to an extreme planet. But in this case the belt is young, less than 10,000 years old, and it is difficult to produce energetic collisions far from the star in such young systems."

Two previous papers have confirmed Fomalhaut b's existence as derived in the previous Hubble observations.

"Fomalhaut is a rather special system because it looks like we have a snapshot of what our solar system was doing 4 billion years ago," Kalas said. "The planetary architecture is being redrawn, the comet belts are evolving, and planets may be gaining and losing their moons." Astronomers will continue monitoring Fomalhaut b for decades to come because they may have a chance to observe a planet entering an icy debris belt that is like the Kuiper Belt at the fringe of our own solar system.

For more information and related images, visit:

http://hubblesite.org/news/2013/01

http://www.nasa.gov

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington.

Ray Villard | Newswise
Further information:
http://www.nasa.gov
http://hubblesite.org/news/2013/01

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>