Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Reveals Rogue Planetary Orbit for Fomalhaut b

11.01.2013
Newly released Hubble Space Telescope images of a vast debris disk encircling the nearby star Fomalhaut, and of a mysterious planet circling it, may provide forensic evidence of a titanic planetary disruption in the system.

Astronomers are surprised to find that the debris belt is wider than previously known, spanning a gulf of space from 14 billion miles to nearly 20 billion miles from the star. Even more surprisingly, the latest Hubble images have allowed a team of astronomers to calculate that the planet follows an unusual elliptical orbit that carries it on a potentially destructive path through the vast dust ring.


NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)

Rogue Planetary Orbit for Fomalhaut b This false-color composite image, taken with the Hubble Space Telescope, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere and produce various phenomena. The black circle at the center of the image blocks out the light from the bright star, allowing reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012.

The planet, called Fomalhaut b, swings as close to its star as 4.6 billion miles, and the outermost point of its orbit is 27 billion miles away from the star. The orbit was re-calculated from the newest Hubble observation made in 2012. "We are shocked -- Fomalhaut b probably passed three times closer to the star than we previously thought, and now it is zipping outward," said Paul Kalas of the University of California at Berkeley and the SETI Institute in Mountain View, Calif.

The Fomalhaut team led by Kalas considers this circumstantial evidence that there may be other planet-like bodies in the system that gravitationally disturbed Fomalhaut b to place it in such a highly eccentric orbit.

His team is presenting their finding on January 8 at the 221st meeting of the American Astronomical Society in Long Beach, Calif.

Among several scenarios to explain Fomalhaut b's 2,000-year-long orbit is the hypothesis that an as yet undiscovered planet gravitationally ejected Fomalhaut b from a position closer to the star, and sent it flying into an orbit that extends beyond the dust belt. "Hot Jupiters get tossed through scattering events, where one planet goes in and one gets thrown out. This could be the planet that gets thrown out," according to co-investigator Mark Clampin of NASA's Goddard Space Flight Center in Greenbelt, Md.

Hubble also found that the dust and ice belt encircling Fomalhaut (the star) has an apparent gap slicing across the belt. This might have been carved out by another undetected planet, researchers said. "Hubble's exquisite view of the dust belt shows irregularities that strongly motivate a search for other planets in the system," Kalas said.

"If its orbit lies in the same plane with the dust belt, then Fomalhaut b will intersect the belt around 2032 on the outbound leg of its orbit. During the crossing, icy and rocky debris in the belt could crash into the planet's atmosphere and create the type of cosmic fireworks seen when comet Shoemaker-Levy 9 crashed into Jupiter," Kalas said. "But if Fomalhaut b is not co-planar with the belt, we may not see anything at all except for a gradual dimming of Fomalhaut b as it travels farther and farther from the star," he explained.

Kalas hypothesized that Fomalhaut b's extreme orbit is a major clue in explaining why the planet is unusually bright in visible light but very dim in infrared light. The planet could be between the mass of Pluto and Jupiter, but the optical brightness possibly originates from a ring or shroud of dust around the planet, reflecting starlight. The dust is rapidly produced by satellites orbiting the planet, which suffer extreme erosion by impacts and gravitational stirring when Fomalhaut b enters into the planetary system after a millennium of deep freeze beyond the main belt. "An analogy can be found by looking at Saturn, which has a tenuous but very large dust ring produced when meteoroids hit the outer moon called Phoebe," Kalas said.

The team has also considered a different scenario where a hypothetical second dwarf planet suffered a catastrophic collision with Fomalhaut b. Kalas explained, "The collision scenario would provide a solution as to why Fomalhaut (the star) has a narrow outer belt linked to an extreme planet. But in this case the belt is young, less than 10,000 years old, and it is difficult to produce energetic collisions far from the star in such young systems."

Two previous papers have confirmed Fomalhaut b's existence as derived in the previous Hubble observations.

"Fomalhaut is a rather special system because it looks like we have a snapshot of what our solar system was doing 4 billion years ago," Kalas said. "The planetary architecture is being redrawn, the comet belts are evolving, and planets may be gaining and losing their moons." Astronomers will continue monitoring Fomalhaut b for decades to come because they may have a chance to observe a planet entering an icy debris belt that is like the Kuiper Belt at the fringe of our own solar system.

For more information and related images, visit:

http://hubblesite.org/news/2013/01

http://www.nasa.gov

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington.

Ray Villard | Newswise
Further information:
http://www.nasa.gov
http://hubblesite.org/news/2013/01

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>