Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Finds Three Surprisingly Dry Exoplanets

25.07.2014

Astronomers using NASA's Hubble Space Telescope have gone looking for water vapor in the atmospheres of three planets orbiting stars similar to the sun -- and have come up nearly dry.

The three planets, known as HD 189733b, HD 209458b, and WASP-12b, are between 60 and 900 light-years away from Earth and were thought to be ideal candidates for detecting water vapor in their atmospheres because of their high temperatures where water turns into a measurable vapor.


This is an artistic illustration of the gas giant planet HD 209458b in the constellation Pegasus. To the surprise of astronomers, they have found much less water vapor in the hot world’s atmosphere than standard planet-formation models predict.

Image Credit: NASA, ESA, G. Bacon (STScI) and N. Madhusudhan (UC)

These so-called “hot Jupiters” are so close to their star they have temperatures between 1,500 and 4,000 degrees Fahrenheit, however, the planets were found to have only one-tenth to one one-thousandth the amount of water predicted by standard planet-formation theories.

"Our water measurement in one of the planets, HD 209458b, is the highest-precision measurement of any chemical compound in a planet outside our solar system, and we can now say with much greater certainty than ever before that we've found water in an exoplanet," said Nikku Madhusudhan of the Institute of Astronomy at the University of Cambridge, England. "However, the low water abundance we have found so far is quite astonishing."

Madhusudhan, who led the research, said that this finding presents a major challenge to exoplanet theory. "It basically opens a whole can of worms in planet formation. We expected all these planets to have lots of water in them. We have to revisit planet formation and migration models of giant planets, especially “hot Jupiters,” and investigate how they're formed."

He emphasizes that these results may have major implications in the search for water in potentially habitable Earth-sized exoplanets. Instruments on future space telescopes may need to be designed with a higher sensitivity if target planets are drier than predicted. "We should be prepared for much lower water abundances than predicted when looking at super-Earths (rocky planets that are several times the mass of Earth)," Madhusudhan said.

Using near-infrared spectra of the planets observed with Hubble, Madhusudhan and his collaborators estimated the amount of water vapor in each of the planetary atmospheres that explains the data.

The planets were selected because they orbit relatively bright stars that provide enough radiation for an infrared-light spectrum to be taken. Absorption features from the water vapor in the planet's atmosphere are detected because they are superimposed on the small amount of starlight that glances through the planet's atmosphere.

Detecting water is almost impossible for transiting planets from the ground because Earth's atmosphere has a lot of water in it, which contaminates the observation. "We really need the Hubble Space Telescope to make such observations," said Nicolas Crouzet of the Dunlap Institute at the University of Toronto and co-author of the study.

The currently accepted theory on how giant planets in our solar system formed, known as core accretion, states a planet is formed around the young star in a protoplanetary disk made primarily of hydrogen, helium, and particles of ices and dust composed of other chemical elements. The dust particles stick to each other, eventually forming larger and larger grains. The gravitational forces of the disk draw in these grains and larger particles until a solid core forms. This then leads to runaway accretion of both solids and gas to eventually form a giant planet.

This theory predicts that the proportions of the different elements in the planet are enhanced relative to those in its star, especially oxygen, which is supposed to be the most enhanced. Once the giant planet forms, its atmospheric oxygen is expected to be largely encompassed within water molecules. The very low levels of water vapor found by this research raise a number of questions about the chemical ingredients that lead to planet formation.

"There are so many things we still don't know about exoplanets, so this opens up a new chapter in understanding how planets and solar systems form," said Drake Deming of the University of Maryland, who led one of the precursor studies. "The problem is that we are assuming the water to be as abundant as in our own solar system. What our study has shown is that water features could be a lot weaker than our expectations."

The findings are published July 24 in The Astrophysical Journal Letters.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble

and

http://hubblesite.org/news/2014/36 

J.D. Harrington
Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Ray Villard | Eurek Alert!

Further reports about: Astronomy Earth Flight Hubble Jupiters NASA Space Telescope atmosphere measurement temperatures

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>