Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Finds Stars that Go 'Ballistic'

09.01.2009
Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas. The stars in these NASA Hubble Space Telescope images are among 14 young runaway stars spotted by the Advanced Camera for Surveys between October 2005 and July 2006. The images will be presented today at the American Astronomical Society meeting in Long Beach, Calif.

Even some stars go ballistic, racing through interstellar space like bullets and tearing through clouds of gas.

Images from NASA's Hubble Space Telescope reveal 14 young, runaway stars plowing through regions of dense interstellar gas, creating brilliant arrowhead structures and trailing tails of glowing gas. These arrowheads, or bow shocks, form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake.

"We think we have found a new class of bright, high-velocity stellar interlopers," says astronomer Raghvendra Sahai of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and leader of the Hubble study. "Finding these stars is a complete surprise because we were not looking for them. When I first saw the images, I said 'Wow. This is like a bullet speeding through the interstellar medium.' Hubble's sharp 'eye' reveals the structure and shape of these bow shocks."

The astronomers can only estimate the ages, masses, and velocities of these renegade stars. The stars appear to be young - just millions of years old. Their ages are based partly on their strong stellar winds.

Most stars produce powerful winds either when they are very young or very old. Only very massive stars greater than 10 times the Sun's mass have stellar winds throughout their lifetimes. But the objects observed by Hubble are not very massive, because they do not have glowing clouds of ionized gas around them. They are medium-sized stars that are a few to eight times more massive than the Sun. The stars are not old because the shapes of the nebulae around aging, dying stars are very different, and old stars are almost never found near dense interstellar clouds.

Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are traveling fast, more than 112,000 miles an hour (more than 180,000 kilometers an hour) with respect to the dense gas they are plowing through, which is roughly five times faster than typical young stars.

"The high-speed stars were likely kicked out of their homes, which were probably massive star clusters," Sahai says.

There are two possible ways this stellar expulsion could have happened. One way is if one star in a binary system exploded as a supernova and the partner got kicked out. Another scenario is a collision between two binary star systems or a binary system and a third star. One or more of these stars could have picked up energy from the interaction and escaped the cluster.

Assuming their youthful phase lasts only a million years and they are moving at roughly 112,000 miles an hour, the stars have traveled about 160 light-years.

Runaway stars have been seen before. The Infrared Astronomical Satellite (IRAS), which performed an all-sky infrared survey in 1983, spied a few similar-looking objects. The first observation of these objects was in the late 1980s. But those stars produced much larger bow shocks than the stars in the Hubble study, suggesting that they are more massive stars with more powerful stellar winds.

"The stars in our study are likely the lower-mass and/or lower-speed counterparts to the massive stars with bow shocks detected by IRAS," Sahai explains. "We think the massive runaway stars observed before were just the tip of the iceberg. The stars seen with Hubble may represent the bulk of the population, both because many more lower-mass stars inhabit the universe than higher-mass stars, and because a much larger number are subject to modest speed kicks."

Astronomers have not spotted many of these stellar interlopers before because they are hard to find. "You don't know where to look for them because you cannot predict where they will be," Sahai says. "So all of them have been found serendipitously, including the 14 stars we found with Hubble."

Sahai and his team used Hubble's Advanced Camera for Surveys to examine 35 objects that appeared as bright infrared sources in the IRAS archive. They were looking for long-lived pre-planetary nebulae, puffed-up aging stars on the verge of shedding most of their outer layers to become glowing planetary nebulae. Instead, the astronomers stumbled upon the runaway stars.

The team is planning follow-up studies to search for more interlopers, as well as study selected objects from this Hubble survey in greater detail to understand their effects on their environment.

"One of the questions that these very showy encounters raise is what effect they have on the clouds," says team member Mark Morris of the University of

California, Los Angeles. "Is it an insignificant flash in the pan, or do the strong winds from these stars stir up the clouds and thereby slow down their evolution toward forming another generation of stars?"

Sahai will discuss his team's results at an 11 a.m. (PST) press conference Jan. 7, at the American Astronomical Society meeting in Long Beach, Calif.

The science team consists of R. Sahai of NASA's Jet Propulsion Laboratory in Pasadena, Calif., M. Morris of the University of California in Los Angeles, Calif., M. Claussen of the National Radio Astronomy Observatory in Socorro, N.M., and R. Ainsworth of the University of Tennessee in Knoxville.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

STScI is an International Year of Astronomy 2009 (IYA 2009) program partner.

Donna Weaver | Newswise Science News
Further information:
http://hubblesite.org/news/2009/03
http://www.nasa.gov/hubble

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>