Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble and ESO’s VLT provide unique 3D views of remote galaxies

12.03.2009
Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope’s acute eye, and the capacity of ESO’s Very Large Telescope to probe the motions of gas in tiny objects.

By looking at this unique “history book” of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past.

For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT’s FLAMES/GIRAFFE spectrograph (ESO 13/02) — which obtains simultaneous spectra from small areas of extended objects — can now also resolve the motions of the gas in these distant galaxies (ESO 10/06).

“This unique combination of Hubble and the VLT allows us to model distant galaxies almost as nicely as we can close ones,” says François Hammer, who led the team. “In effect, FLAMES/GIRAFFE now allows us to measure the velocity of the gas at various locations in these objects. This means that we can see how the gas is moving, which provides us with a three-dimensional view of galaxies halfway across the Universe.”

The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with both Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies.

In one galaxy, GIRAFFE revealed a region full of ionised gas, that is, hot gas composed of atoms that have been stripped of one or several electrons. This is normally due to the presence of very hot, young stars. However, even after staring at the region for more than 11 days, Hubble did not detect any stars! “Clearly this unusual galaxy has some hidden secrets,” says Mathieu Puech, lead author of one of the papers reporting this study. Comparisons with computer simulations suggest that the explanation lies in the collision of two very gas-rich spiral galaxies. The heat produced by the collision would ionise the gas, making it too hot for stars to form.

Another galaxy that the astronomers studied showed the opposite effect. There they discovered a bluish central region enshrouded in a reddish disc, almost completely hidden by dust. “The models indicate that gas and stars could be spiralling inwards rapidly,” says Hammer. This might be the first example of a disc rebuilt after a major merger (ESO 01/05).

Finally, in a third galaxy, the astronomers identified a very unusual, extremely blue, elongated structure — a bar — composed of young, massive stars, rarely observed in nearby galaxies. Comparisons with computer simulations showed the astronomers that the properties of this object are well reproduced by a collision between two galaxies of unequal mass.

“The unique combination of Hubble and FLAMES/GIRAFFE at the VLT makes it possible to model distant galaxies in great detail, and reach a consensus on the crucial role of galaxy collisions for the formation of stars in a remote past,” says Puech. “It is because we can now see how the gas is moving that we can trace back the mass and the orbits of the ancestral galaxies relatively accurately. Hubble and the VLT are real ‘time machines’ for probing the Universe’s history”, adds Sébastien Peirani, lead author of another paper reporting on this study.

The astronomers are now extending their analysis to the whole sample of galaxies observed. “The next step will then be to compare this with closer galaxies, and so, piece together a picture of the evolution of galaxies over the past six to eight billion years, that is, over half the age of the Universe,” concludes Hammer.

More information
The results reported here are either in print or to be printed in Astronomy and Astrophysics:
Puech et al. 2009, A&A, 493, 899, A forming disk at z~0.6: Collapse of a gaseous disk or major merger remnant?
Peirani et al. 2009, A giant bar induced by a merger event at z=0.4?
Hammer et al. 2009, A forming, dust enshrouded disk at z=0.43: the first example of a late type disk rebuilt after a major merger?
The team is composed of F. Hammer, H. Flores, M. Puech, Y. Yang, and M. Rodrigues (Observatoire de Paris, France), L. Athanassoula (LAM, France), B. Neichel (Observatoire de Paris and ONERA, France), and S. Peirani (Institut d'Astrophysique de Paris, France).

The observations were obtained in the framework of the IMAGES ESO Large Programme.

This is a joint ESO/ST-EcF release. The Hubble update is available on:
http://www.spacetelescope.org/updates/html/update0903.html
Contacts
François Hammer, Mathieu Puech
Observatoire de Paris, GEPI, France
Phone: +33 (1) 45 07 74 08, +33 (1) 45 07 71 58
E-mail: Francois.Hammer@obspm.fr, mathieu.puech@obspm.fr
Sébastien Peirani
Institut d'Astrophysique de Paris, France
Phone: +33 (1) 44 32 81 34
E-mail: peirani@iap.fr

Dr. Henri Boffin | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>