Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble discovers 'wobbling galaxies'

27.10.2017

Observations may hint at nature of dark matter

Using the NASA/ESA Hubble Space Telescope, astronomers have discovered that the brightest galaxies within galaxy clusters "wobble" relative to the cluster's centre of mass. This unexpected result is inconsistent with predictions made by the current standard model of dark matter. With further analysis it may provide insights into the nature of dark matter, perhaps even indicating that new physics is at work.


Abell S1063, a galaxy cluster, was observed by the NASA/ESA Hubble Space Telescope as part of the Frontier Fields programme. The huge mass of the cluster acts as a cosmic magnifying glass and enlarges even more distant galaxies, so they become bright enough for Hubble to see.

Credit: NASA, ESA, and J. Lotz (STScI)

Dark matter constitutes just over 25 percent of all matter in the Universe but cannot be directly observed, making it one of the biggest mysteries in modern astronomy. Invisible halos of elusive dark matter enclose galaxies and galaxy clusters alike. The latter are massive groupings of up to a thousand galaxies immersed in hot intergalactic gas. Such clusters have very dense cores, each containing a massive galaxy called the "brightest cluster galaxy" (BCG).

The standard model of dark matter (cold dark matter model) predicts that once a galaxy cluster has returned to a "relaxed" state after experiencing the turbulence of a merging event, the BCG does not move from the cluster's centre. It is held in place by the enormous gravitational influence of dark matter.

But now, a team of Swiss, French, and British astronomers have analysed ten galaxy clusters observed with the NASA/ESA Hubble Space Telescope, and found that their BCGs are not fixed at the centre as expected [1].

The Hubble data indicate that they are "wobbling" around the centre of mass of each cluster long after the galaxy cluster has returned to a relaxed state following a merger. In other words, the centre of the visible parts of each galaxy cluster and the centre of the total mass of the cluster -- including its dark matter halo -- are offset, by as much as 40 000 light-years.

"We found that the BCGs wobble around centre of the halos," explains David Harvey, astronomer at EPFL, Switzerland, and lead author of the paper. "This indicates that, rather than a dense region in the centre of the galaxy cluster, as predicted by the cold dark matter model, there is a much shallower central density. This is a striking signal of exotic forms of dark matter right at the heart of galaxy clusters."

The wobbling of the BCGs could only be analysed as the galaxy clusters studied also act as gravitational lenses. They are so massive that they warp spacetime enough to distort light from more distant objects behind them. This effect, called strong gravitational lensing, can be used to make a map of the dark matter associated with the cluster, enabling astronomers to work out the exact position of the centre of mass and then measure the offset of the BCG from this centre.

If this "wobbling" is not an unknown astrophysical phenomenon and in fact the result of the behaviour of dark matter, then it is inconsistent with the standard model of dark matter and can only be explained if dark matter particles can interact with each other -- a strong contradiction to the current understanding of dark matter. This may indicate that new fundamental physics is required to solve the mystery of dark matter.

Co-author Frederic Courbin, also at EPFL, concludes: "We're looking forward to larger surveys -- such as the Euclid survey -- that will extend our dataset. Then we can determine whether the wobbling of BGCs is the result of a novel astrophysical phenomenon or new fundamental physics. Both of which would be exciting!"

###

Notes

[1] The study was performed using archive data from Hubble. The observations were originally made for theCLASH and LoCuSS surveys.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

This research was presented in a paper entitled "A detection of wobbling Brightest Cluster Galaxies within massive galaxy clusters" by Harvey et al., which appeared in the Monthly Notices of the Royal Astronomical Society.

The international team of astronomers in this study consists of David Harvey (Laboratoire d'Astrophysique EPFL, Switzerland), F. Courbin (Laboratoire d'Astrophysique EPFL, Switzerland), J.P. Kneib (Laboratoire d'Astrophysique EPFL, Switzerland; CNRS, France), and Ian G. McCarthy (Liverpool John Moores University, UK).

Image credit: NASA, ESA, J. Lotz (STScI), M. Postman (STScI), J. Richard (CRAL) and J.-P. Kneib (LAM), T. Lauer (NOAO), S. Perlmutter (UC Berkeley, LBNL), A. Koekemoer (STScI), A. Riess (STScI/JHU), J. Nordin (LBNL, UC Berkeley), D. Rubin (Florida State), C. McCully (Rutgers University) and the CLASH Team

Links

Contacts

David Harvey
Laboratoire d'Astrophysique EPFL
Versoix, Switzerland
Tel: 41-22-37-92277
Email: david.harvey@epfl.ch

Frederic Courbin
Laboratoire d'Astrophysique EPFL
Versoix, Switzerland
Tel: 41-22-37-92418
Email: frederic.courbin@epfl.ch

Jean-Paul Kneib
Laboratoire d'Astrophysique - EPFL
Versoix, Switzerland
Tel: 41-79-733-21-11
Email: jean-paul.kneib@epfl.ch

Mathias Jäger
ESA/Hubble Public Information Officer
Garching bei München, Germany
Cell: 49-176-62397500
Email: mjaeger@parnter.eso.org

http://www.spacetelescope.org 

Mathias Jäger, ESA/Hubble Public | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>