Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble discovers water vapour venting from Jupiter’s moon Europa

16.12.2013
The NASA/ESA Hubble Space Telescope has discovered water vapour erupting from the frigid surface of Jupiter’s moon Europa, in one or more localised plumes near its south pole.

Europa is already thought to harbour a liquid ocean beneath its icy crust, making the moon one of the main targets in the search for habitable worlds away from Earth. This new finding is the first observational evidence of water vapour being ejected off the moon's surface.


Water vapour plumes on Jupiter's moon Europa (artist's impression)

"The discovery that water vapour is ejected near the south pole strengthens Europa's position as the top candidate for potential habitability," said lead author Lorenz Roth of the Southwest Research Institute in San Antonio, Texas. "However, we do not know yet if these plumes are connected to subsurface liquid water or not." The Hubble findings will be published in the 12 December online issue of Science Express, and are being reported today at the meeting of the American Geophysical Union in San Francisco, California, USA.

The Hubble discovery makes Europa only the second moon in the Solar System known to have water vapour plumes. In 2005, plumes of water vapour and dust were detected by NASA's Cassini orbiter spewing off the surface of the Saturnian moon Enceladus.

The Europa plumes were discovered by Hubble observations in December 2012. The Space Telescope Imaging Spectrograph (STIS) detected faint ultraviolet light from an aurora at the moon's south pole. This aurora is driven by Jupiter's intense magnetic field, which causes particles to reach such high speeds that they can split the water molecules in the plume when they hit them, resulting in oxygen and hydrogen ions which leave their telltale imprint in the colours of the aurora.

So far, only water vapour has been detected — unlike the plumes on Enceladus, which also contain ice and dust particles.

"We pushed Hubble to its limits to see this very faint emission," said co-lead author and principal investigator of the Hubble observing campaign Joachim Saur of the University of Cologne, Germany. "Only after a particular camera on the Hubble Space Telescope had been repaired on the last servicing mission by the Space Shuttle did we gain the sensitivity to really search for these plumes."

Roth suggests long cracks on Europa's surface, known as linea, might be venting water vapour into space. Similar fissures have been photographed near Enceladus's south pole by the Cassini spacecraft. It is unknown how deep inside Europa's crust the source of the water may be. Roth asks, "Do the vents extend down to a subsurface ocean or are the ejecta simply from warmed ice caused by friction stresses near the surface?"

Also like Enceladus, the Hubble team found that the intensity of the plumes varies with Europa's orbital position. Active geysers have only been seen when the moon is furthest from Jupiter. But the researchers could not detect any sign of venting when Europa is closer to Jupiter.

One explanation is that the long fractures in the ice crust experience more stress as gravitational tidal forces push and pull on the moon and so open vents at larger distances from Jupiter. The vents are narrowed or closed when at closest approach to the gas giant planet [1]. Team member Kurt Retherford, also of the Southwest Research Institute, points out that "the plume variability supports a key prediction that we should see this kind of tidal effect if there is a subsurface ocean on Europa".

Future space probe missions to Europa could confirm that the exact locations and sizes of vents and determine whether they connect to liquid subsurface reservoirs. It is important news for missions such as ESA's JUpiter ICy moons Explorer, a mission planned for launch in 2022, and which aims to explore both Jupiter and three of its largest moons: Ganymede, Callisto, and Europa.

Notes

[1] When Europa orbits around Jupiter, the moon experiences varying tidal forces at different points in its orbit. The tidal stresses compress the vents at the south pole region when Europa is closest to Jupiter, and stretch them when Europa is furthest away, making it possible for the vents to open up. A subsurface ocean would allow the stresses on Europa's surface to be much stronger as the interior would be malleable and flexible.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of L. Roth (Southwest Research Institute, USA; University of Cologne, Germany), J. Saur (University of Cologne, Germany), K. D. Retherford (Southwest Research Institute, USA), D. F. Strobel (The Johns Hopkins University, USA), P. D. Feldman (The Johns Hopkins University, USA), M. A. McGrath (NASA Marshall Space Flight Center, USA), F. Nimmo (University of California, USA).

More information

Image credit: NASA, ESA, L. Roth (Southwest Research Institute, USA/University of Cologne, Germany) and M. Kornmesser.

Contacts

Lorenz Roth
Southwest Research Institute, San Antonio, Texas, USA
University of Cologne, Germany
Tel: +1-210-522-2225
Email: lorenz.roth@swri.org
Joachim Saur
University of Cologne
Germany
Tel: +49-221-470-2310
Email: jsaur@uni-koeln.de
Nicky Guttridge
ESA/Hubble Public Information Officer
Garching, Germany
Tel: +49-89-3200-6855
Cell: +44 7512 318322
Email: nguttrid@partner.eso.org
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland, USA
Tel: +1-410-338-4514
Email: villard@stsci.edu

| ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1322/

Further reports about: Enceladus Hubble Hubble Space Telescope Jupiter NASA Space water molecule water vapour

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>