Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus

12.05.2010
A heavy runaway star is rushing away from a nearby stellar nursery at more than 250,000 miles an hour, a speed that will get you to the Moon and back in two hours. The runaway is the most extreme case of a very massive star that has been kicked out of its home by a group of even heftier siblings.

The homeless star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth.

Tantalizing clues from three observatories, including the Hubble Space Telescope's newly installed Cosmic Origins Spectrograph (COS), and some old-fashioned detective work, suggest that the star may have traveled about 375 light-years from its suspected home, a giant star cluster called R136. Nestled in the core of 30 Doradus, R136 contains several stars topping 100 solar masses each.

The observations offer insights into how massive star clusters behave.

"These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region," says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. "Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters."

Runaway stars can be made in a couple of ways. A star may encounter one or two heavier siblings in a massive, dense cluster and get booted out through a stellar game of pinball. Or, a star may get a 'kick' from a supernova explosion in a binary system, with the more massive star exploding first.

"It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster's most massive stars have not yet exploded as supernovae," says COS team member Danny Lennon of the Space Telescope Science Institute. "This implies that the star must have been ejected through dynamical interaction."

The runaway star research team, led by Chris Evans of the Royal Observatory Edinburgh, published the study's results May 5 in the online edition of The Astrophysical Journal Letters.

Astronomers have been on the trail of this rogue star since 2006 when a team led by Ian Howarth of University College London spotted it with the Anglo-Australian Telescope at Siding Spring Observatory. The observation revealed that the stellar misfit was an exceptionally hot, massive blue-white star and relatively far from any cluster in which such stars are usually found.

Hubble astronomers unexpectedly picked up another clue when they used the star as a target to calibrate the COS instrument, installed in May 2009 during Servicing Mission 4. Those ultraviolet spectroscopic observations, made in July 2009, showed that the wayward star is unleashing a fury of charged particles in one of the most powerful stellar winds known, a clear sign that it is extremely massive, perhaps as much as 90 times heavier than the Sun. The star, therefore, also must be very young, about 1 million to 2 million years old, because extremely massive stars live only a few million years.

Sifting through Hubble's archive of images, astronomers found another important piece of evidence. An optical image of the star taken by the Wide Field Planetary Camera 2 in 1995 revealed that it is at one end of an egg-shaped cavity. The cavity's glowing edges stretch behind the star and point in the direction of its home in 30 Doradus.

Another spectroscopic study from the European Southern Observatory's Very Large Telescope (VLT) at the Paranal Observatory in Chile revealed that the star's velocity is constant and not a result of orbital motion in a binary system. Its velocity corresponds to an unusual motion relative to the star's surroundings, evidence that it is a runaway star.

The study also confirmed that the light from the runaway is from a single massive star rather than the combined light of two lower-mass stars. In addition, the observation established that the star is about 10 times hotter than the Sun, a temperature that is consistent with a high-mass object.

The VLT observations are part of a legacy program called the FLAMES (VLT multi-object spectrograph) Tarantula Survey. The survey, conducted by an international team led by Evans of the Royal Observatory, comprises more than 900 stars in the 30 Doradus region. Like the COS observations of the star, the FLAMES results also were serendipitous. The star's location is far from the nebula's central region, placing it at the edge of the FLAMES survey field.

The renegade star may not be the only runaway in the region. Two other extremely hot, massive stars have been spotted beyond the edges of 30 Doradus. Astronomers suspect that these stars, too, may have been ejected from their home. They plan to analyze the stars in detail to determine whether 30 Doradus might be unleashing a barrage of massive stellar runaways into the surrounding neighborhood.

The wayward star will continue to streak across space, says team member Paul Crowther of the University of Sheffield in England, and will eventually end its life in a titanic supernova explosion, likely leaving behind a remnant black hole.

For images and more information, visit:

http://hubblesite.org/news/2010/14
http://www.spacetelescope.org/news/heic1008/
http://www.nasa.gov/hubble
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C.

Donna Weaver | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>