Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus

A heavy runaway star is rushing away from a nearby stellar nursery at more than 250,000 miles an hour, a speed that will get you to the Moon and back in two hours. The runaway is the most extreme case of a very massive star that has been kicked out of its home by a group of even heftier siblings.

The homeless star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth.

Tantalizing clues from three observatories, including the Hubble Space Telescope's newly installed Cosmic Origins Spectrograph (COS), and some old-fashioned detective work, suggest that the star may have traveled about 375 light-years from its suspected home, a giant star cluster called R136. Nestled in the core of 30 Doradus, R136 contains several stars topping 100 solar masses each.

The observations offer insights into how massive star clusters behave.

"These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region," says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. "Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters."

Runaway stars can be made in a couple of ways. A star may encounter one or two heavier siblings in a massive, dense cluster and get booted out through a stellar game of pinball. Or, a star may get a 'kick' from a supernova explosion in a binary system, with the more massive star exploding first.

"It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster's most massive stars have not yet exploded as supernovae," says COS team member Danny Lennon of the Space Telescope Science Institute. "This implies that the star must have been ejected through dynamical interaction."

The runaway star research team, led by Chris Evans of the Royal Observatory Edinburgh, published the study's results May 5 in the online edition of The Astrophysical Journal Letters.

Astronomers have been on the trail of this rogue star since 2006 when a team led by Ian Howarth of University College London spotted it with the Anglo-Australian Telescope at Siding Spring Observatory. The observation revealed that the stellar misfit was an exceptionally hot, massive blue-white star and relatively far from any cluster in which such stars are usually found.

Hubble astronomers unexpectedly picked up another clue when they used the star as a target to calibrate the COS instrument, installed in May 2009 during Servicing Mission 4. Those ultraviolet spectroscopic observations, made in July 2009, showed that the wayward star is unleashing a fury of charged particles in one of the most powerful stellar winds known, a clear sign that it is extremely massive, perhaps as much as 90 times heavier than the Sun. The star, therefore, also must be very young, about 1 million to 2 million years old, because extremely massive stars live only a few million years.

Sifting through Hubble's archive of images, astronomers found another important piece of evidence. An optical image of the star taken by the Wide Field Planetary Camera 2 in 1995 revealed that it is at one end of an egg-shaped cavity. The cavity's glowing edges stretch behind the star and point in the direction of its home in 30 Doradus.

Another spectroscopic study from the European Southern Observatory's Very Large Telescope (VLT) at the Paranal Observatory in Chile revealed that the star's velocity is constant and not a result of orbital motion in a binary system. Its velocity corresponds to an unusual motion relative to the star's surroundings, evidence that it is a runaway star.

The study also confirmed that the light from the runaway is from a single massive star rather than the combined light of two lower-mass stars. In addition, the observation established that the star is about 10 times hotter than the Sun, a temperature that is consistent with a high-mass object.

The VLT observations are part of a legacy program called the FLAMES (VLT multi-object spectrograph) Tarantula Survey. The survey, conducted by an international team led by Evans of the Royal Observatory, comprises more than 900 stars in the 30 Doradus region. Like the COS observations of the star, the FLAMES results also were serendipitous. The star's location is far from the nebula's central region, placing it at the edge of the FLAMES survey field.

The renegade star may not be the only runaway in the region. Two other extremely hot, massive stars have been spotted beyond the edges of 30 Doradus. Astronomers suspect that these stars, too, may have been ejected from their home. They plan to analyze the stars in detail to determine whether 30 Doradus might be unleashing a barrage of massive stellar runaways into the surrounding neighborhood.

The wayward star will continue to streak across space, says team member Paul Crowther of the University of Sheffield in England, and will eventually end its life in a titanic supernova explosion, likely leaving behind a remnant black hole.

For images and more information, visit:
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C.

Donna Weaver | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>