Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble captures outstanding views of mammoth stars

25.11.2008
The image shows a pair of colossal stars, WR 25 and Tr16-244, located within the open cluster Trumpler 16. This cluster is embedded within the Carina Nebula, an immense cauldron of gas and dust that lies approximately 7500 light-years from Earth.

The Carina Nebula contains several ultra-hot stars, including these two star systems and the famous blue star Eta Carinae, which has the highest luminosity yet confirmed.

As well as producing incredible amounts of heat, these stars are also very bright, emitting most of their radiation in the ultraviolet and appearing blue in colour. They are so powerful that they burn through their hydrogen fuel source faster than other types of stars, leading to a "live fast, die young" lifestyle.

WR 25 is the brightest, situated near the centre of the image. The neighbouring Tr16-244 is the third brightest, just to the upper left of WR 25. The second brightest, to the left of WR 25, is a low mass star located much closer to the Earth than the Carina Nebula. Stars like WR 25 and Tr16-244 are relatively rare compared to other, cooler types. They interest astronomers because they are associated with star-forming nebulae, and influence the structure and evolution of galaxies.

WR 25 is likely to be the most massive and interesting of the two. Its true nature was revealed two years ago when an international group of astronomers led by Roberto Gamen, then at the Universidad de La Serena in Chile, discovered that it is composed of at least two stars. The more massive is a Wolf-Rayet star and may weigh more than 50 times the mass of our Sun. It is losing mass rapidly through powerful stellar winds that have expelled the majority of its outermost hydrogen-rich layers, while its more mundane binary companion is probably about half as massive as the Wolf-Rayet star, and orbits around it once every 208 days.

Massive stars are usually formed in compact clusters. Often the individual stars are so physically close to each other that it is very difficult to resolve them in telescopes as separate objects. These Hubble observations have revealed that the Tr16-244 system is actually a triple star. Two of the stars are so close to each other that they look like a single object, but Hubble's Advanced Camera for Surveys shows them as two. The third star takes tens or hundreds of thousands of years to orbit the other two. The brightness and proximity of the components of such massive double and triple stars makes it particularly challenging to discover the properties of massive stars.

WR 25 and Tr16-244 are the likely sources of radiation that is causing a giant gas globule within the Carina Nebula to slowly evaporate away into space, while possibly inducing the formation of new stars within it . The radiation is also thought to be responsible for the globule's interesting shape, prominently featured in earlier Hubble images, which looks like a hand with a "defiant" finger pointing towards WR 25 and Tr16-244.

These new observations were obtained by a team including astronomers from US, Chilean, Spanish, and Argentine institutions and led by Jesús Maíz Apellániz from the Instituto de Astrofísica de Andalucía in Spain. They are using Hubble as well as ground-based observatories in Spain, Chile, and Argentina to build a comprehensive catalogue of observations of all the massive stars in the Galaxy that are detectable at visible wavelengths.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0822.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
30.05.2017 | ICFO-The Institute of Photonic Sciences

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>