Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Captures New Life in an Ancient Galaxy

19.11.2010
Elliptical galaxies were once thought to be aging star cities whose star-making heyday was billions of years ago.

But new observations with NASA's Hubble Space Telescope are helping to show that elliptical galaxies still have some youthful vigor left, thanks to encounters with smaller galaxies.

Images of the core of NGC 4150, taken in near-ultraviolet light with the sharp-eyed Wide Field Camera 3 (WFC3), reveal streamers of dust and gas and clumps of young, blue stars that are significantly less than a billion years old. Evidence shows that the star birth was sparked by a merger with a dwarf galaxy.

The new study helps bolster the emerging view that most elliptical galaxies have young stars, bringing new life to old galaxies.

"Elliptical galaxies were thought to have made all of their stars billions of years ago," says astronomer Mark Crockett of the University of Oxford, leader of the Hubble observations. "They had consumed all their gas to make new stars. Now we are finding evidence of star birth in many elliptical galaxies, fueled mostly by cannibalizing smaller galaxies.

"These observations support the theory that galaxies built themselves up over billions of years by collisions with dwarf galaxies," Crockett continues. "NGC 4150 is a dramatic example in our galactic back yard of a common occurrence in the early universe."

The Hubble images reveal turbulent activity deep inside the galaxy's core. Clusters of young, blue stars trace a ring around the center that is rotating with the galaxy. The stellar breeding ground is about 1,300 light-years across. Long strands of dust are silhouetted against the yellowish core, which is composed of populations of older stars.

From a Hubble analysis of the stars' colors, Crockett and his team calculated that the star-formation boom started about a billion years ago, a comparatively recent event in cosmological history. The galaxy's star-making factory has slowed down since then.

"We are seeing this galaxy after the major starburst has occurred," explains team member Joseph Silk of the University of Oxford. "The most massive stars are already gone. The youngest stars are between 50 million and 300 to 400 million years old. By comparison, most of the stars in the galaxy are around 10 billion years old."

The encounter that triggered the star birth would have been similar to our Milky Way swallowing the nearby Large Magellanic Cloud.

"We believe that a merger with a small, gas-rich galaxy around one billion years ago supplied NGC 4150 with the fuel necessary to form new stars," says team member Sugata Kaviraj of the Imperial College London and the University of Oxford. "The abundance of 'metals'--elements heavier than hydrogen and helium--in the young stars is very low, suggesting the galaxy that merged with NGC 4150 was also metal-poor. This points towards a small, dwarf galaxy, around one-twentieth the mass of NGC 4150."

Minor mergers such as this one are more ubiquitous than interactions between hefty galaxies, the astronomers say. For every major encounter, there are probably up to 10 times more frequent clashes between a large and a small galaxy. Major collisions are easier to see because they create incredible fireworks: distorted galaxies, long streamers of gas, and dozens of young star clusters. Smaller interactions are harder to detect because they leave relatively little trace.

Over the past five years, however, ground- and space-based telescopes have offered hints of fresh star formation in elliptical galaxies. Ground-based observatories captured the blue glow of stars in elliptical galaxies, and satellites such as the Galaxy Evolution Explorer (GALEX), which looks in far- and near-ultraviolet light, confirmed that the blue glow came from fledgling stars much less than a billion years old. Ultraviolet light traces the glow of hot, young stars.

Crockett and his team selected NGC 4150 for their Hubble study because a ground-based spectroscopic analysis gave tantalizing hints that the galaxy's core was not a quiet place. The ground-based survey, called the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON), revealed the presence of young stars and dynamic activity that was out of sync with the galaxy.

"In visible light, elliptical galaxies such as NGC 4150 look like normal elliptical galaxies," Silk says. "But the picture changes when we look in ultraviolet light. At least a third of all elliptical galaxies glow with the blue light of young stars."

Adds Crockett: "Ellipticals are the perfect laboratory for studying minor mergers in ultraviolet light because they are dominated by old red stars, allowing astronomers to see the faint blue glow of young stars."

The astronomers hope to study other elliptical galaxies in the SAURON survey to look for the signposts of new star birth. The team's results have been accepted for publication in The Astrophysical Journal.

For images and more information about this elliptical galaxies study, visit:

http://hubblesite.org/news/2010/38
http://www.nasa.gov/hubble
The Hubble Space Telescope is a project of international
cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Donna Weaver | Newswise Science News
Further information:
http://www.stsci.edu
http://hubblesite.org/news/2010/38
http://www.nasa.gov/hubble

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>