Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How was the Universe Created out of Nothing?

13.03.2014

University of Haifa researchers present a novel answer to one of the most intriguing questions of theoretical physics

*The innovative study by Dr. Maya Lincoln and Dr. Avi Wasser harnesses the field of information systems to explain one of the most fascinating cosmological phenomena – “Creation ex Nihilo”* 

What was there before the Big-Bang? Is a creation of the Universe out of nothing possible? Questions regarding the formation of the Universe and ‘what was there’ before it came to existence have been of great interest to mankind at all times. Several suggestions have been presented during the ages – mostly assuming a preliminary state prior to creation. Nevertheless, such theories cannot be considered complete, as they lack an explanation of what created the initial, pre-creation, conditions.

An innovative theory presented by Dr. Maya Lincoln and Dr. Avi Wasser from the University of Haifa in Israel provides an answer to this ancient scientific conundrum. The theory, “Creation ex Nihilo” (CEN), was recently published at Elsevier’s prestigious periodical Physics of the Dark Universe, presenting a breakthrough in theoretical physics. The research is based on information systems research principles– the field of expertise of both authors. This distinctive approach has attracted the attention of the theoretical physics research community- featuring an “off the matrix” solution for one the most intriguing mysteries of nature.

... more about:
»Creation »Universe »conditions »phenomena »physics

Currently, the most commonly accepted theory for the Universe creation is the Big-Bang theory, stating that the Universe has expanded from a dense singular point which contained all presently existing material and energy. Following the Big-Bang, the Universe was formed along with the physical dimensions of space and time. Yet, the Big-Bang theory lacks a definitive formation point since it assumes a preliminary physical state, without explaining how this unique state was formed. To overcome this deficiency, some physical theories have suggested that the Universe was created out of nothing, but while each defined “nothing” differently, this nothing was not free from substance or matter.

However, only now, and surprisingly from a field that seems very far from cosmology and dark matter physics, a new theory arrives and explains how the tangible reality has emerged from the nothingness. The surprising field is the research of information systems. "There are theories which refer to the existing Universe as an independent information system that is operated by a software that writes itself. That is to say, it is possible to envision a ‘source code’ according to which the laws of physics are being managed," explains Dr. Lincoln how she and Dr. Wasser came to think about the creation of the Universe.

These scholars show how in terms of information systems, it is possible to present "nothing" as a system which consists of infinite information elements and infinite anti-information elements that coexist simultaneously and therefore cancel each other. Therefore, such “nothing system” results in no material, no energy, and as a matter of fact, a no physical existence of anything in terms of information. According to the new theory, prior to the formation of the Universe, this system was symmetrical, with infinite items of information and anti-information nullifying one another. However, according to a commonly known phenomenon in physics, such systems are prone to a "Spontaneous Symmetry Break" (SSB), when the unequal number of bits at each bit group destabilizes the information balance. This breaking generates information which results in energy and by that transforms the information system from a "nothing system" into a material system. At this point the “Creation Ex Nihilo” (CEN) theory converges with the Big-Bang theory and other common theories in this field, from the stage in which the Universe becomes material.  

"Nowadays there are also physical phenomena in the Universe, which demonstrate creation ex nihilo, and by that reinforce our theory regarding the spontaneous breakings of symmetry among information and anti-information elements. According to our theory, the Universe is a self-excited machine that “produces” information and knows to read the "code of nature" and in this way goes on manufacturing more and more changes and more and more new information'" indicates Dr. Lincoln.

The newly innovative theory explains additional phenomena of theoretical physics, part of which have been considered unsolvable until today, such as the sources of the second law of thermodynamics, the phenomenon related to quantum physics regarding the creation of virtual particles in the vacuum, the phenomenon of matter and anti-matter, and other phenomena the scholars intend to explain in further studies.

You are welcome to read the full article at the following link:

http://www.sciencedirect.com/science/article/pii/S221268641300037X 

For additional details, please contact: Ilan Yavelberg +972-52-866-6404

Ilan Yavelberg | University of Haifa
Further information:
http://www.haifa.ac.il

Further reports about: Creation Universe conditions phenomena physics

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>