Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to get rid of a satellite after its retirement

02.09.2015

Researchers at University of La Rioja (Spain) have developed a new method to eliminate artificial satellites in Highly Elliptical Orbits when they finish their mission. The methodology, which allows for a reduction of both cost and risk, has been tested with the European Space Agency INTEGRAL mission, which will re-enter into the Earth's atmosphere in order to disintegrate in 2029.

The problem of space debris is one of the main challenges that aerospace engineers have to face, due to the danger it poses to satellites. In this context, members of the Scientific Computing Group (GRUCACI) at University of La Rioja have developed a method to eliminate satellites in Highly Elliptical Orbits (HEO) when they finish their mission.


The European Space Agency prepares satellite INTEGRAL to re-enter and disintegrate into the Earth's atmosphere in 2029.

Credit: ESA-D. Ducros

HEO orbits are very eccentric (the farthest position can be ten times farther from the Earth than the nearest) and inclined (60 degrees or more with respect to the equator); their evolution is strongly influenced by the gravitational effects of the Earth's equatorial bulge and the pull from the Moon and the Sun.

Both effects can cause satellites placed in this type of orbits to cross two 'protected' regions (Low Earth Orbits, LEO, and Geostationary Orbits, GEO) during long periods of time, thus increasing the risk of collisions with the numerous satellites operating in them. In addition, the probability of an uncontrolled re-entry into the lower layers of the Earth's atmosphere also increases.

"Our research has focused on taking advantage of the same gravitational effects that affect HEO orbits so as to reduce the cost of eliminating the satellites which operate in them once they have reached retirement", Roberto Armellin, co-author of the work, explains to Sinc.

"Some propellant needs to be reserved in order to perform the satellite disposal manoeuvres, so it cannot be used to extend the mission duration, which makes it more expensive", the researcher adds, "so we have developed a methodology aimed at reducing the amount of propellant needed, and hence the associated cost".

The researchers have undertaken their study, which they have published in the journal Advances in Space Research, as a mathematical optimization problem in which several objectives have to be simultaneously fulfilled, and they have solved it by means of an evolutionary algorithm -based on biological evolution-.

They have also used their own orbit propagator software, which is designed to propagate the evolution of an orbiter during 100 years in just a few seconds. This program allows finding the best conditions and instants for satellites to re-enter into the Earth's atmosphere, where they can safely disintegrate with minimum risk for other satellites.

Validity of the method tested on INTEGRAL

In order to prove the effectiveness of their methodology, the researchers have applied it to the European Space Agency (ESA) INTEGRAL mission, an advanced gamma-ray space observatory launched in 2002.

"The simulation results suggest designing manoeuvres so that the INTEGRAL satellite re-enters into the Earth's atmosphere, and subsequently disintegrates, during the period of time from September 2028 to July 2029, in a controlled way and with a cost which is reduced by the amplification of natural gravitational effects", Armellin points out.

This solution coincides with the real strategy adopted by ESA to eliminate INTEGRAL, which has fired its engines four times this year so as to re-enter safely and with a reduced cost on February 2029.

The latest regulations of ESA about space debris require that, once the end of life has been reached, if a satellite continues to cross the LEO protected region it must re-enter into the Earth's atmosphere and disintegrate before 25 years. INTEGRAL is going to comply with these regulations, even though it was not obliged to, due to its launch date.

The study of the GRUCACI team also proves that it is possible to select some latitude regions such that the satellite re-entry takes place with minimum risk to cause damage to populated areas of the Earth.

###

Reference:

Roberto Armellin, Juan F. San-Juan and Martín Lara. "End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL". Advances in Space Research 56 (3): 479-493, August 2015.

SINC Team | EurekAlert!

Further reports about: Atmosphere ESA gravitational gravitational effects orbits satellite space debris

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>