Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to get rid of a satellite after its retirement

02.09.2015

Researchers at University of La Rioja (Spain) have developed a new method to eliminate artificial satellites in Highly Elliptical Orbits when they finish their mission. The methodology, which allows for a reduction of both cost and risk, has been tested with the European Space Agency INTEGRAL mission, which will re-enter into the Earth's atmosphere in order to disintegrate in 2029.

The problem of space debris is one of the main challenges that aerospace engineers have to face, due to the danger it poses to satellites. In this context, members of the Scientific Computing Group (GRUCACI) at University of La Rioja have developed a method to eliminate satellites in Highly Elliptical Orbits (HEO) when they finish their mission.


The European Space Agency prepares satellite INTEGRAL to re-enter and disintegrate into the Earth's atmosphere in 2029.

Credit: ESA-D. Ducros

HEO orbits are very eccentric (the farthest position can be ten times farther from the Earth than the nearest) and inclined (60 degrees or more with respect to the equator); their evolution is strongly influenced by the gravitational effects of the Earth's equatorial bulge and the pull from the Moon and the Sun.

Both effects can cause satellites placed in this type of orbits to cross two 'protected' regions (Low Earth Orbits, LEO, and Geostationary Orbits, GEO) during long periods of time, thus increasing the risk of collisions with the numerous satellites operating in them. In addition, the probability of an uncontrolled re-entry into the lower layers of the Earth's atmosphere also increases.

"Our research has focused on taking advantage of the same gravitational effects that affect HEO orbits so as to reduce the cost of eliminating the satellites which operate in them once they have reached retirement", Roberto Armellin, co-author of the work, explains to Sinc.

"Some propellant needs to be reserved in order to perform the satellite disposal manoeuvres, so it cannot be used to extend the mission duration, which makes it more expensive", the researcher adds, "so we have developed a methodology aimed at reducing the amount of propellant needed, and hence the associated cost".

The researchers have undertaken their study, which they have published in the journal Advances in Space Research, as a mathematical optimization problem in which several objectives have to be simultaneously fulfilled, and they have solved it by means of an evolutionary algorithm -based on biological evolution-.

They have also used their own orbit propagator software, which is designed to propagate the evolution of an orbiter during 100 years in just a few seconds. This program allows finding the best conditions and instants for satellites to re-enter into the Earth's atmosphere, where they can safely disintegrate with minimum risk for other satellites.

Validity of the method tested on INTEGRAL

In order to prove the effectiveness of their methodology, the researchers have applied it to the European Space Agency (ESA) INTEGRAL mission, an advanced gamma-ray space observatory launched in 2002.

"The simulation results suggest designing manoeuvres so that the INTEGRAL satellite re-enters into the Earth's atmosphere, and subsequently disintegrates, during the period of time from September 2028 to July 2029, in a controlled way and with a cost which is reduced by the amplification of natural gravitational effects", Armellin points out.

This solution coincides with the real strategy adopted by ESA to eliminate INTEGRAL, which has fired its engines four times this year so as to re-enter safely and with a reduced cost on February 2029.

The latest regulations of ESA about space debris require that, once the end of life has been reached, if a satellite continues to cross the LEO protected region it must re-enter into the Earth's atmosphere and disintegrate before 25 years. INTEGRAL is going to comply with these regulations, even though it was not obliged to, due to its launch date.

The study of the GRUCACI team also proves that it is possible to select some latitude regions such that the satellite re-entry takes place with minimum risk to cause damage to populated areas of the Earth.

###

Reference:

Roberto Armellin, Juan F. San-Juan and Martín Lara. "End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL". Advances in Space Research 56 (3): 479-493, August 2015.

SINC Team | EurekAlert!

Further reports about: Atmosphere ESA gravitational gravitational effects orbits satellite space debris

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>