Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How strongly does tissue decelerate the therapeutic heavy ion beam?

16.07.2014

PTB has developed a method for the more exact dosing of heavy ion irradiation in the case of cancer

Irradiation with heavy ions is suitable in particular for patients suffering from cancer with tumours which are difficult to access, for example in the brain.

These particles hardly damage the penetrated tissue, but can be used in such a way that they deliver their maximum energy only directly at the target: the tumour. Research in this relatively new therapy method is focussed again and again on the exact dosing: how must the radiation parameters be set in order to destroy the cancerous cells "on the spot" with as low a damage as possible to the surrounding tissue?

The answer depends decisively on the extent to which the ions can be decelerated by body tissue on their way to the tumour. Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have established an experiment for the more exact determination of the stopping power of tissue for carbon ions in the therapeutically relevant area which is so far unique worldwide.

Although the measurement data so far available must still become more exact, the following can already be said: The method works and can, in future, contribute to clearly improving the dosing for cancer therapy with carbon ions. The first results have recently been published in the magazine "Physics in Medicine and Biology".

Human tissue mainly consists of water. It can, therefore, be simulated well in liquid water in which form accelerated ions can be stopped on their way and at which target they deliver their maximum energy quantity – at least theoretically, because up to now experimental data has existed only for water vapour. Scientists, however, assume: If the aggregate state is neglected, the data determined for the determination of the radiation dose become too imprecise.

Within the scope of the doctoral thesis of J. M. Rahm, PTB scientists have now succeeded for the first time in determining the stopping power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. The first results actually indicate that carbon ions are less strongly stopped in liquid water, related per molecule, than in water vapour.

As soon as more exact data are available, the findings will be included in the calibration of ionization chambers which are used to determine the dose in therapy planning. At present, the Heidelberg Ion-Beam Therapy Center (HIT) is the only institution in Europe which irradiates patients with heavy ions.

The procedure applied by the researchers is based on a method which originates from nuclear physics: the Inverted Doppler Shift Attenuation Method. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state.

The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler effect, which leads to the displacement of the gamma energy, and the exponential-decay law allow the development of the velocity of the carbon ions with time to be pursued and, thus, conclusions on the stopping process to be drawn.

Woon Yong Baek | Eurek Alert!
Further information:
http://www.ptb.de

Further reports about: Doppler Doppler effect HIT Nuclear Physics PTB damage gamma-ray energy ions kinetic physics therapy tumour

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>