Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How strongly does tissue decelerate the therapeutic heavy ion beam?

16.07.2014

PTB has developed a method for the more exact dosing of heavy ion irradiation in the case of cancer

Irradiation with heavy ions is suitable in particular for patients suffering from cancer with tumours which are difficult to access, for example in the brain.

These particles hardly damage the penetrated tissue, but can be used in such a way that they deliver their maximum energy only directly at the target: the tumour. Research in this relatively new therapy method is focussed again and again on the exact dosing: how must the radiation parameters be set in order to destroy the cancerous cells "on the spot" with as low a damage as possible to the surrounding tissue?

The answer depends decisively on the extent to which the ions can be decelerated by body tissue on their way to the tumour. Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have established an experiment for the more exact determination of the stopping power of tissue for carbon ions in the therapeutically relevant area which is so far unique worldwide.

Although the measurement data so far available must still become more exact, the following can already be said: The method works and can, in future, contribute to clearly improving the dosing for cancer therapy with carbon ions. The first results have recently been published in the magazine "Physics in Medicine and Biology".

Human tissue mainly consists of water. It can, therefore, be simulated well in liquid water in which form accelerated ions can be stopped on their way and at which target they deliver their maximum energy quantity – at least theoretically, because up to now experimental data has existed only for water vapour. Scientists, however, assume: If the aggregate state is neglected, the data determined for the determination of the radiation dose become too imprecise.

Within the scope of the doctoral thesis of J. M. Rahm, PTB scientists have now succeeded for the first time in determining the stopping power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. The first results actually indicate that carbon ions are less strongly stopped in liquid water, related per molecule, than in water vapour.

As soon as more exact data are available, the findings will be included in the calibration of ionization chambers which are used to determine the dose in therapy planning. At present, the Heidelberg Ion-Beam Therapy Center (HIT) is the only institution in Europe which irradiates patients with heavy ions.

The procedure applied by the researchers is based on a method which originates from nuclear physics: the Inverted Doppler Shift Attenuation Method. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state.

The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler effect, which leads to the displacement of the gamma energy, and the exponential-decay law allow the development of the velocity of the carbon ions with time to be pursued and, thus, conclusions on the stopping process to be drawn.

Woon Yong Baek | Eurek Alert!
Further information:
http://www.ptb.de

Further reports about: Doppler Doppler effect HIT Nuclear Physics PTB damage gamma-ray energy ions kinetic physics therapy tumour

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>