Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stars grow into heavyweights

04.11.2015

Astronomers find a stable disk around a young, massive sun

Stars count lightweights and heavyweights among their number. All are born in clouds of gas and dust, but the more massive a baby star, the earlier nuclear fusion ignites in its core. And the radiation pressure produced here should really purge its surroundings and thus prevent the infall of matter which will allow the star to grow bigger. Some stars nevertheless manage to reach masses of more than a hundred times that of our Sun. How is this possible?


A star puts on weight: This artist’s impression shows the disk of gas and dust around the massive sun AFGL 4176.

© K. G. Johnston and ESO

Astronomers have believed for some time that disks around the infant stars play an important role in this process. A team of researchers including astronomers from the Heidelberg Max Planck Institute for Astronomy have now discovered such a stable structure around one of the most massive, newly forming stars in our galaxy.

The team headed by Katharine Johnston from the University of Leeds, and including the Max Planck astronomers Thomas Robitaille, Henrik Beuther, Hendrik Linz and Roy van Boekel, turned their sights on the object with catalogue number AFGL 4176. It is a very massive star in the southern constellation known as Centaurus, around 14,000 light years from Earth.

The star is in the process of being born, which is why its immediate environment is concealed within an envelope of gas and dust. The scientists observed the star in the millimetre and submillimetre range with the ALMA observatory of the European Southern Observatory (ESO), however – and looked behind the veil and into the interior of the envelope. They detected a disk-like, rotating structure.

To confirm this observation, the astronomers arranged a kind of identification parade: first they simulated more than 10,000 model disks with different properties. They then compared these images and spectra with the data obtained from nature. The best agreement was for a stable disk, where the gravitational effects of both the star and the disk material are important.

The radius of the disk surrounding AFGL 4176 is roughly 2000 times the average distance between the Earth and the Sun. The total mass is 12 solar masses – this corresponds to just under half the weight of the star itself, which is roughly 25 solar masses. The disk rotates around the star in a similar way to the planets around our Sun: the gas in the inner regions moves faster than that in the outer ones and obeys the laws discovered by Johannes Kepler at the beginning of the 17th century.

These Keplerian disks could play a key role in the growth of massive stars and particularly explain how enough additional matter can accrete despite the substantial radiation pressure exerted by the young star. One factor is that a stable disk of this type can direct enormous amounts of matter onto the nascent star; another is that it presents a very narrow profile to the radiation pressure and thus a much smaller area of attack than gas which surrounds the star like a spherical shell.

Astronomers had previously been unable to detect stable disks around the most massive stellar embryos (O-type stars) with certainty. It was therefore unclear whether these disks were possible explanations at all.

The observations by Katharine Johnston and her colleagues, in contrast, show that at least one of the most massive stars can be formed in the same way as its less massive relatives: through mechanisms which are the same as those of less massive stars despite differences in scales and in timing; and with matter which is funnelled onto the growing infant star by a Keplerian disk.

The high quality of the ALMA observations raises expectations that it will also be possible to clarify further important, unanswered questions about the formation of massive stars. The astronomers hope for information about one feature in particular: very massive stars are nearly always members of twin or multiple star systems. High-resolution images of the innermost regions in the early phases of star birth could show directly how the precursors of the different components of such a system form.


Contact

Dr. Markus Pössel
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Email: poessel@mpia.de

 
Dr. Henrik Beuther
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-447

Email: beuther@mpia.de

Dr. Thomas Robitaille
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-395

Email: robitaille@mpia.de


Original publication
Johnston et al.
A Keplerian-like disk around the forming O-type star AFGL 4176
Astrophysical Journal Letters, 29 October 2015

Source

Dr. Markus Pössel | Max Planck Institute for Astronomy, Heidelberg
Further information:
https://www.mpg.de/9723445/massive-star

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>