Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How scientists used NASA data to predict the corona of the Aug. 21 Total Solar Eclipse

16.10.2017

When the total solar eclipse swept across the United States on Aug. 21, 2017, NASA satellites captured a diverse set of images from space. But days before the eclipse, some NASA satellites also enabled scientists to predict what the corona -- the Sun's outer atmosphere -- would look like during the eclipse, from the ground. In addition to offering a case study to test our predictive abilities, the predictions also enabled some eclipse scientists to choose their study targets in advance.

Predictive Science, Inc., San Diego, Calif. -- a private computational physics research company supported by NASA, the National Science Foundation and the Air Force Office of Scientific Research -- used data from NASA's Solar Dynamics Observatory, or SDO to develop an improved numerical model that simulated what the corona would look like during the total eclipse. Their model uses observations of magnetic fields on the Sun's surface and requires a wealth of supercomputing resources to predict how the magnetic field shapes the corona over time.


Predictive Science, Inc. developed a numerical model that simulated what the corona would look like during the Aug. 21, 2017 total solar eclipse.

Credit: Predictive Science, Inc./Paul Holdorf/Joy Ng

As the corona and solar material spread outward from the Sun, they can manifest themselves as disturbances in near-Earth space, known as space weather. "Space weather models must be able to characterize the structure of the corona in order to improve forecasts of the path and possible impacts of these events," Predictive Science president and scientist Jon Linker said.

One key tool are computer models that simulate events on the Sun before they even happen. This comparing of models and observations is a core aspect of heliophysics -- the field of science dedicated to understanding the Sun and its dynamic influence throughout the solar system. Without the ability to measure the corona directly, heliophysicists test their theories by using complex computer simulations.

Eclipses offer a unique opportunity for scientists to test such models. During the total eclipse, the Moon completely obscured the Sun's bright face, revealing the innermost part of the corona -- the region where solar eruptions such as coronal mass ejections originate, but is difficult to observe under ordinary circumstances. By comparing their predictions to the observations gathered during the eclipse itself, researchers can assess and improve the performance of their coronal models.

The model the Predictive Science researchers used for their final prediction of the August 2017 eclipse was their most complex yet. In addition to SDO's maps of the Sun's magnetic field, it also utilized SDO observations of filaments -- serpentine structures on the Sun's surface comprised of cool, dense solar material.

Greater complexity demands more computing hours, and each simulation required thousands of processers and took about two days of real time to complete. The research group ran their model on several supercomputers including facilities at the Texas Advanced Computer Center in Austin, Texas; the San Diego Supercomputer Center in California; and the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA's Ames Research Center in Silicon Valley, California.

"Based on a very preliminary comparison, it looks like the model did very well in capturing features of the large-scale corona," Linker said. In its increased complexity, the model demonstrates that even the Sun's fine magnetic structures are intimately related to the vast structure of the corona.

While scientists were running their models, NASA's own Solar and Terrestrial Relations Observatory, or STEREO-A spacecraft, was also able to peer into the future and provide clues as to what the corona would look like the day of the eclipse. As the eclipse drew closer, due to STEREO-A's position behind the Sun and the particular rotation rates of the Sun and Earth, STEREO-A's view of the corona on Aug. 12, 2017, was virtually the same those within the path of totality would see nine days later on Aug. 21. That is, STEREO-A's vantage point is roughly nine days in advance of Earth's.

STEREO's key instruments include a pair of coronagraphs -- telescopes that use a metal disk called an occulting disk to study the corona. Just like a total eclipse, the occulting disk blocks the Sun's bright light, making it possible to discern the surrounding corona.

Coronagraph images from Aug. 12 and 21 show great similarity; both feature a dominant three-streamer shape. Here, the STEREO image is compared to an image from the joint ESA/NASA Solar and Heliospheric Observatory, or SOHO, which was positioned to share Earth's view of the corona on Aug. 21. The slight difference in the location of the streamers is due to the fact that STEREO-A and SOHO view the Sun from slightly different angles.

"The small difference between the Aug. 12 and Aug. 21 images show the Sun's atmosphere evolves very slowly -- as we expect it to, in its declining phase toward solar minimum," said Angelos Vourlidas, a STEREO science team member and heliophysicist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. "The Sun is slowly going to sleep -- but not quietly, as the recent spate of solar activity reminded us!"

Solar minimum is the period of lower solar activity in the Sun's natural approximately 11-year cycle. In times of greater solar activity, the dynamic corona could have evolved too quickly to make such a prediction useful. But in these times nearing solar minimum, both Predictive Science and STEREO's eclipse predictions offered an opportunity for researchers to improve models and our understanding of the Sun's current activity.

Lina Tran | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>