Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Rocket Science May Improve Kidney Dialysis

18.03.2015

Software from the aerospace industry has allowed an interdisciplinary team of U.K. researchers to design Arterio-Venous Fistulae with better, less unnatural flow patterns, which may reduce failure rates and improve clinical outcomes for patients with kidney failure who require dialysis.

A team of researchers in the United Kingdom has found a way to redesign an artificial connection between an artery and vein, known as an Arterio-Venous Fistulae, which surgeons form in the arms of people with end-stage renal disease so that those patients can receive routine dialysis, filtering their blood and keeping them alive after their kidneys fail.


Peter Vincent/Imperial College London

Streamlines of flow within an idealized Arterio-Venous Fistulae. The color of the lines corresponds to the speed of the blood—red being highest, and blue lowest.

The new design, described in the journal Physics of Fluids, from AIP Publishing, may decrease the likelihood of blockages in Arterio-Venous Fistulae, which is a major complication of dialysis.

While the AVF would have to prove effective in clinical trials before they could be deemed a success, the researchers are enthusiastic about their approach, which used software from the aerospace industry to design the novel configurations.

"At the moment, the process of creating an Arterio-Venous Fistulae for dialysis is rather 'one-size-fits-all'," said Peter Vincent, a senior lecturer and EPSRC early career fellow in the Department of Aeronautics at Imperial College London. "Our ultimate aim is to use computational simulation tools to design tailored, patient-specific Arterio-Venous Fistulae configurations that won't block and fail."

Dialysis and Chronic Kidney Disease

Dialysis is a life-saving treatment for end-stage renal disease -- the last stage of chronic kidney disease -- a serious and often fatal health condition in which a person's kidneys become damaged and can no longer filter blood as effectively as healthy kidneys. As a result, wastes from the blood remain within the body and often lead to other health problems such as cardiovascular disease, anemia and bone disease.

Chronic kidney disease is a global health challenge. For perspective, in the United States alone, the Centers for Disease Control and Prevention estimates that more than 20 million adults -- more than 10 percent of the U.S. adult population -- may have the disease, although many are undiagnosed. Kidney disease is now the 9th leading cause of death in the U.S.

Once a person's kidney's fail, they require either a kidney transplant or regular treatment via a dialysis machine to keep filtering the blood like a kidney. Transplant surgeries often have very good outcomes, but the procedures are limited by the availability of donated kidneys, and only a few thousand become available every year in the United States, while tens of thousands of people are on the waiting list for a kidney transplant. People often wait for a new kidney transplant for years, having to undergo periodic dialysis the entire time.

One problem that arises with dialysis is that the connections made between the body and a dialysis machine via an Arterio-Venous Fistulae frequently become blocked and fail shortly after they are created -- leading to unfavorable clinical outcomes and a significant additional cost burden for healthcare systems worldwide.

So an interdisciplinary team of U.K. researchers -- including members from aeronautics, bioengineering, computational engineering, medical imaging and clinical medicine -- from Imperial College London, Imperial College Renal and Transplant Centre at Hammersmith Hospital, and St. Mary's Hospital set out to design an Arterio-Venous Fistulae with reduced failure rates.

Design Based on Aerospace Software

To do this, the researchers first needed to gain a better understanding of how arterial curvature affects blood flow and oxygen transport patterns within Arterio-Venous Fistula.

Blood flow patterns within AVF are "inherently 'un-natural,' and it's thought that these unnatural flow patterns lead to their ultimate failure," explained Vincent.

By using computational simulation software originally developed for the aerospace sector, the team is able to simulate and predict flow patterns in various Arterio-Venous Fistula configurations. "This allows us to design Arterio-Venous Fistula with much more natural flow patterns, which will hopefully reduce failure rates," Vincent said.

The team "identified ways of constructing Arterio-Venous Fistula such that the flow is stabilized," he added. "We discovered that if an Arterio-Venous Fistulae is formed via connection of a vein onto the outside of an arterial bend, it stabilizes the flow."

The implications of this work are tremendous, because it may now finally be possible to design an Arterio-Venous Fistulae with reduced failure rates -- offering improved clinical outcomes for patients with kidney failure who require dialysis.

The article, "The Effect of In-Plane Arterial Curvature on Blood Flow and Oxygen Transport in Arterio-Venous Fistulae," is authored by F. Iori, L. Grechy, R.W. Corbett, W. Gedroyc, N. Duncan, C.G. Caro and P. Vincent. It appears in the journal Physics of Fluids on March 17, 2015 (DOI: 10.1063/1.4913754). After that date, it may be accessed at: http://scitation.aip.org/content/aip/journal/pof2/27/3/10.1063/1.4913754

The authors of this paper are affiliated with Imperial College London, Imperial College Renal and Transplant Centre at Hammersmith Hospital and St. Mary's Hospital.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

Further reports about: AIP Physics of Fluids blood kidney disease kidney transplant physics renal disease

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>