Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Rocket Science May Improve Kidney Dialysis

18.03.2015

Software from the aerospace industry has allowed an interdisciplinary team of U.K. researchers to design Arterio-Venous Fistulae with better, less unnatural flow patterns, which may reduce failure rates and improve clinical outcomes for patients with kidney failure who require dialysis.

A team of researchers in the United Kingdom has found a way to redesign an artificial connection between an artery and vein, known as an Arterio-Venous Fistulae, which surgeons form in the arms of people with end-stage renal disease so that those patients can receive routine dialysis, filtering their blood and keeping them alive after their kidneys fail.


Peter Vincent/Imperial College London

Streamlines of flow within an idealized Arterio-Venous Fistulae. The color of the lines corresponds to the speed of the blood—red being highest, and blue lowest.

The new design, described in the journal Physics of Fluids, from AIP Publishing, may decrease the likelihood of blockages in Arterio-Venous Fistulae, which is a major complication of dialysis.

While the AVF would have to prove effective in clinical trials before they could be deemed a success, the researchers are enthusiastic about their approach, which used software from the aerospace industry to design the novel configurations.

"At the moment, the process of creating an Arterio-Venous Fistulae for dialysis is rather 'one-size-fits-all'," said Peter Vincent, a senior lecturer and EPSRC early career fellow in the Department of Aeronautics at Imperial College London. "Our ultimate aim is to use computational simulation tools to design tailored, patient-specific Arterio-Venous Fistulae configurations that won't block and fail."

Dialysis and Chronic Kidney Disease

Dialysis is a life-saving treatment for end-stage renal disease -- the last stage of chronic kidney disease -- a serious and often fatal health condition in which a person's kidneys become damaged and can no longer filter blood as effectively as healthy kidneys. As a result, wastes from the blood remain within the body and often lead to other health problems such as cardiovascular disease, anemia and bone disease.

Chronic kidney disease is a global health challenge. For perspective, in the United States alone, the Centers for Disease Control and Prevention estimates that more than 20 million adults -- more than 10 percent of the U.S. adult population -- may have the disease, although many are undiagnosed. Kidney disease is now the 9th leading cause of death in the U.S.

Once a person's kidney's fail, they require either a kidney transplant or regular treatment via a dialysis machine to keep filtering the blood like a kidney. Transplant surgeries often have very good outcomes, but the procedures are limited by the availability of donated kidneys, and only a few thousand become available every year in the United States, while tens of thousands of people are on the waiting list for a kidney transplant. People often wait for a new kidney transplant for years, having to undergo periodic dialysis the entire time.

One problem that arises with dialysis is that the connections made between the body and a dialysis machine via an Arterio-Venous Fistulae frequently become blocked and fail shortly after they are created -- leading to unfavorable clinical outcomes and a significant additional cost burden for healthcare systems worldwide.

So an interdisciplinary team of U.K. researchers -- including members from aeronautics, bioengineering, computational engineering, medical imaging and clinical medicine -- from Imperial College London, Imperial College Renal and Transplant Centre at Hammersmith Hospital, and St. Mary's Hospital set out to design an Arterio-Venous Fistulae with reduced failure rates.

Design Based on Aerospace Software

To do this, the researchers first needed to gain a better understanding of how arterial curvature affects blood flow and oxygen transport patterns within Arterio-Venous Fistula.

Blood flow patterns within AVF are "inherently 'un-natural,' and it's thought that these unnatural flow patterns lead to their ultimate failure," explained Vincent.

By using computational simulation software originally developed for the aerospace sector, the team is able to simulate and predict flow patterns in various Arterio-Venous Fistula configurations. "This allows us to design Arterio-Venous Fistula with much more natural flow patterns, which will hopefully reduce failure rates," Vincent said.

The team "identified ways of constructing Arterio-Venous Fistula such that the flow is stabilized," he added. "We discovered that if an Arterio-Venous Fistulae is formed via connection of a vein onto the outside of an arterial bend, it stabilizes the flow."

The implications of this work are tremendous, because it may now finally be possible to design an Arterio-Venous Fistulae with reduced failure rates -- offering improved clinical outcomes for patients with kidney failure who require dialysis.

The article, "The Effect of In-Plane Arterial Curvature on Blood Flow and Oxygen Transport in Arterio-Venous Fistulae," is authored by F. Iori, L. Grechy, R.W. Corbett, W. Gedroyc, N. Duncan, C.G. Caro and P. Vincent. It appears in the journal Physics of Fluids on March 17, 2015 (DOI: 10.1063/1.4913754). After that date, it may be accessed at: http://scitation.aip.org/content/aip/journal/pof2/27/3/10.1063/1.4913754

The authors of this paper are affiliated with Imperial College London, Imperial College Renal and Transplant Centre at Hammersmith Hospital and St. Mary's Hospital.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

Further reports about: AIP Physics of Fluids blood kidney disease kidney transplant physics renal disease

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>