Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much gravity is enough?

04.09.2014

York U-led research studies how astronauts determine ‘up’ in space

Keeping upright in a low-gravity environment is not easy, and NASA documents abound with examples of astronauts falling on the lunar surface. Now, a new study by an international team of researchers led by York University professors Laurence Harris and Michael Jenkin, published today in PLOS ONE, suggests that the reason for all these moon mishaps might be because its gravity isn’t sufficient to provide astronauts with unambiguous information on which way is “up”.

“The perception of the relative orientation of oneself and the world is important not only to balance, but also for many other aspects of perception including recognizing faces and objects and predicting how objects are going to behave when dropped or thrown,” says Harris. “Misinterpreting which way is up can lead to perceptual errors and threaten balance if a person uses an incorrect reference point to stabilize themselves.”

Using a short-arm centrifuge provided by the European Space Agency, the international team simulated gravitational fields of different strengths, and used a York-invented perceptual test to measure the effectiveness of gravity in determining the perception of up. The team found that the threshold level of gravity needed to just influence a person's orientation judgment was about 15 per cent of the level found on Earth – very close to that on the moon.

The team also found that Martian gravity, at 38 per cent of that on Earth, should be sufficient for astronauts to orient themselves and maintain balance on any future manned missions to Mars.

“If the brain does not sense enough gravity to determine which way is up, astronauts may get disoriented, which can lead to errors like flipping switches the wrong way or moving the wrong way in an emergency,” says Jenkin. “Therefore, it’s crucial to understand how the direction of up is established and to establish the relative contribution of gravity to this direction before journeying to environments with gravity levels different to that of Earth.”

This work builds upon results obtained in long-duration microgravity by Harris and Jenkin and other members of York’s Centre for Vision Research on board the International Space Station during the Bodies in the Space Environment project, funded by the Canadian Space Agency.

York University is helping to shape the global thinkers and thinking that will define tomorrow. York U’s unwavering commitment to excellence reflects a rich diversity of perspectives and a strong sense of social responsibility that sets us apart. A York U degree empowers graduates to thrive in the world and achieve their life goals through a rigorous academic foundation balanced by real-world experiential education. As a globally recognized research centre, York U is fully engaged in the critical discussions that lead to innovative solutions to the most pressing local and global social challenges. York U’s 11 faculties and 27 research centres are thinking bigger, broader and more globally, partnering with 288 leading universities worldwide. York U's community is strong − 55,000 students, 7,000 faculty and staff, and more than 250,000 alumni.

-30-

Media Contact: Robin Heron, Media Relations, York University, 416 736 2100 x22097/ rheron@yorku.ca

Robin Heron | Eurek Alert!
Further information:
http://news.yorku.ca/2014/09/03/how-much-gravity-is-enough-york-u-led-research-studies-how-astronauts-determine-up-in-space/

Further reports about: Earth Relations Space astronauts crucial diversity gravity orientation sense

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>