Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How do neutron bells toll on the skin of the atomic nucleus?


An international team of physicists has observed – for the first time with such precision – vibrations of the surface of a heavy nucleus, lead 208Pb. Through their extremely accurate measurements this team has unravelled the details of neutron oscillations in the atomic nucleus and determined how many neutrons on the surface, or ‘skin’, of the nucleus participate in unique vibrations known as pygmy resonances.

If an accelerated ion of high energy impacts on the nucleus of a heavy element, it makes the nucleus vibrate in a very special manner: all of its neutrons begin to oscillate collectively with respect to all of its protons. However, close to the point of impact, these constituents of the atomic nucleus may perform additional vibrations on the surface of the nucleus, called pygmy resonances. 

Measurements carried out using the AGATA spectrometer has unravelled the details of neutron oscillations in the atomic nucleus and determined how many neutrons on the surface, or ‘skin’, of the nucleus participate in unique vibrations known as pygmy resonances. (Source: IFJ PAN)

Up to now, the number of particles on the surface of the nucleus involved in a pygmy resonance – or the number of neutrons particularly affected by the ion impact – was unknown. This mystery could only be resolved by performing extremely precise measurements. Such measurements were possible at the Italian nuclear research facility in Legnaro where an international team of nuclear physicists used for this purpose the recently assembled AGATA gamma-spectrometer of the latest generation.

”One may figuratively compare resonances within the nucleus to what happens during an earthquake, where all buildings vibrate in a more or less consistent rhythm, just like neutrons in a giant resonance. But close to the earthquake’s epicentre, bells on church towers may toll with their own rhythm – in some analogy to a pygmy resonance”, says Prof. Adam Maj at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków.

So far in studies on pigmy resonances, heavy nuclei were bombarded by light particles. This could excite the nucleus in many different ways, so it was difficult to unravel the vibration phenomena. But this time, much heavier ions of oxygen 17O were used to bombard lead 208Pb target nuclei. If such ions hit such atomic nuclei, vibration of the target nucleus occurs almost exclusively on its surface.

”The accuracy of the measurements carried out using the AGATA spectrometer was so high that for the first time we were able to 'see' what is happening at surface of the nucleus. As a result, we were able to reliably assess how do neutrons actually vibrate and how many of them take part in the pygmy resonance caused by the collision”, explains Prof. Angela Bracco of the University of Milano.

AGATA (Advanced Gamma Tracking Array) is an ultra-modern instrument for recording gamma radiation, which has recently began operation at the ALPI (Accelerator Lineare Per Ioni) machine located at the Italian LNL (Legnaro National Laboratories), part of the INFN (Italian Institute of Nuclear Physics). Studies using the AGATA spectrometer are carried out by a team of physicists from several nuclear research laboratories in Poland, Italy, Germany, France, Spain, Sweden, Norway and the UK. The Polish group in Legnaro is a team of physicists from the IFJ PAN in Krakow, who have studied nuclear resonances for many years.

The basic building blocks of the atomic nuclei are positively charged protons whose electric charge must be equal to the total charge of negative electrons in that atom. Thus, the number of protons in the nucleus determines the number of electrons required to balance their charge. In turn, electrons are responsible for the chemical properties of the elements, hence the number of protons in the nucleus fully specifies this atom as a chemical element. The atomic nuclei also contain neutrons which are proton-like particles but without any electric charge. Atomic nuclei which have the same number of protons but a different numbers of neutrons are called isotopes of that element.

In many elements the number of neutrons in the nucleus is equal to, or close to the number of protons. However, in the nuclei of heavy elements the number of neutrons may considerably exceed the number of protons. In the experiments performed at Legnaro the target nucleus of lead, 208Pb, contained 82 protons and 126 neutrons.

”These excess neutrons tend to place themselves at the surface of the nucleus, forming a ‘neutron skin’ which surrounds the protons and the remaining neutrons of the nucleus”, explains Mateusz Krzysiek, a PhD student at IFJ PAN.

It has been known for some decades that if the nucleus of a heavy element is hit by another particle, such as an electron or a helium nucleus (which consists of two protons and two neutrons bound together), the neutrons in the target nucleus will vibrate together with respect to protons in that nucleus. These mutual collective oscillations of protons and neutrons occur with quite a high frequency, therefore with quite a high energy. Physicists call such oscillations the giant dipole resonance. But the nature of oscillations of the neutron skin of the atomic nucleus – whether it oscillates by rocking sideways or whether it ”breathes” back and forth with respect to the centre of the nucleus – remained an open question.

In atomic nuclei which have a neutron skin there is yet another mode of oscillation: the skin neutrons located close to the point of impact will not only take part in their collective motion against protons, but may also vibrate on their own. The energy of this specific vibration is so high that to release it, the nucleus will emit high-energy gamma-ray quanta. Far fewer neutrons are involved in such resonances than in a giant resonance, therefore their gamma-ray signal is much weaker and more difficult to detect. For these reasons such localised vibrations have been termed pygmy resonances.

”Precise measurements of the energy of gamma-ray quanta which we were able to perform with the AGATA spectrometer, helped us to clarify two issues. First, we finally found out how does the neutron skin vibrate: it 'breathes' and does not oscillate sideways. Secondly, we determined that the pygmy resonance in 208Pb lead vibrations involves only about 9% of all neutrons in the nucleus. This means that in the pygmy resonance only some 11 or 12 neutrons vibrate on the surface of the nucleus”, concludes Prof. Maj.

Around the world, pygmy resonance studies are becoming increasingly popular among nuclear physicists. This is because a significant role of such resonances in the development of neutron stars and in the synthesis of elements during early evolution stages of the Universe after the Big Bang.

The Henryk Niewodniczański Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 450 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Polish) in the field of sciences and engineering.


Prof. Adam Maj
The Institute of Nuclear Physics of the Polish Academy of Sciences
tel. +48 12 6628141

The website of the Institute of Nuclear Physics of the Polish Academy of Sciences
Press releases of the Institute of Nuclear Physics of the Polish Academy of Sciences

Adam Maj | AlphaGalileo
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>