Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hovering Not Hard if You’re Top-Heavy

Top-heavy structures are more likely to maintain their balance while hovering in the air than are those that bear a lower center of gravity, researchers at New York University’s Courant Institute of Mathematical Sciences and Department of Physics have found.

Their findings, which appear in the journal Physical Review of Letters, are counter to common perceptions that flight stability can be achieved only through a relatively even distribution of weight—and may offer new design principles for hovering aircraft.

As the Wright brothers demonstrated 100 years ago, the key challenge of flight is maintaining balance. Yet, while insects took to the air 400 million years earlier, their flight stability remains a mystery because of the complex aerodynamics of their flapping wings.

The NYU researchers approached this question by creating experimental conditions needed to achieve stable hovering in mechanical flyers. To do so, they created a range of pyramid-shaped “bugs” constructed from paper that hover when placed in an oscillating column of air, mimicking the effect of flapping wings. They captured the experiment with high-speed videos in order to analyze the nature of the airflow around the bugs.

To gauge which types of structures best maintained their balance, the researchers created paper bugs with various centers of mass. Top-heavy bugs were made by fixing a weight above the pyramid, and low center-of-mass bugs bore this weight below.

Surprisingly, their results showed that the top-heavy bugs hovered stably while those with a lower center of mass could not maintain their balance.

The team showed that when the top-heavy bug tilts, the swirls of air ejected from the far side of the body automatically adjust to keep it upright.

“It works somewhat like balancing a broomstick in your hand,” explained Jun Zhang, a Professor at the Courant Institute and one of the study’s co-authors. “If it begins to fall to one side, you need to apply a force in this same direction to keep it upright.”

For bugs, it is aerodynamical forces that provide this stability.

The lessons learned from these studies could be put to use in designing stable and maneuverable flapping-wing robots.

The study’s other co-authors were postdoctoral researchers Bin Liu, who led the first round experiments, and Leif Ristroph, who came up with the stability theory with Courant Professor Stephen Childress. Another co-author, Annie Weathers, now studies mechanics at the University of Texas, Austin. She took some measurements during her last semester as an undergraduate at NYU.

The study was funded by grants from the National Science Foundation and the U.S. Department of Energy.

James Devitt | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>