Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hovering Not Hard if You’re Top-Heavy

14.02.2012
Top-heavy structures are more likely to maintain their balance while hovering in the air than are those that bear a lower center of gravity, researchers at New York University’s Courant Institute of Mathematical Sciences and Department of Physics have found.

Their findings, which appear in the journal Physical Review of Letters, are counter to common perceptions that flight stability can be achieved only through a relatively even distribution of weight—and may offer new design principles for hovering aircraft.

As the Wright brothers demonstrated 100 years ago, the key challenge of flight is maintaining balance. Yet, while insects took to the air 400 million years earlier, their flight stability remains a mystery because of the complex aerodynamics of their flapping wings.

The NYU researchers approached this question by creating experimental conditions needed to achieve stable hovering in mechanical flyers. To do so, they created a range of pyramid-shaped “bugs” constructed from paper that hover when placed in an oscillating column of air, mimicking the effect of flapping wings. They captured the experiment with high-speed videos in order to analyze the nature of the airflow around the bugs.

To gauge which types of structures best maintained their balance, the researchers created paper bugs with various centers of mass. Top-heavy bugs were made by fixing a weight above the pyramid, and low center-of-mass bugs bore this weight below.

Surprisingly, their results showed that the top-heavy bugs hovered stably while those with a lower center of mass could not maintain their balance.

The team showed that when the top-heavy bug tilts, the swirls of air ejected from the far side of the body automatically adjust to keep it upright.

“It works somewhat like balancing a broomstick in your hand,” explained Jun Zhang, a Professor at the Courant Institute and one of the study’s co-authors. “If it begins to fall to one side, you need to apply a force in this same direction to keep it upright.”

For bugs, it is aerodynamical forces that provide this stability.

The lessons learned from these studies could be put to use in designing stable and maneuverable flapping-wing robots.

The study’s other co-authors were postdoctoral researchers Bin Liu, who led the first round experiments, and Leif Ristroph, who came up with the stability theory with Courant Professor Stephen Childress. Another co-author, Annie Weathers, now studies mechanics at the University of Texas, Austin. She took some measurements during her last semester as an undergraduate at NYU.

The study was funded by grants from the National Science Foundation and the U.S. Department of Energy.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>