Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hovering Not Hard if You’re Top-Heavy

14.02.2012
Top-heavy structures are more likely to maintain their balance while hovering in the air than are those that bear a lower center of gravity, researchers at New York University’s Courant Institute of Mathematical Sciences and Department of Physics have found.

Their findings, which appear in the journal Physical Review of Letters, are counter to common perceptions that flight stability can be achieved only through a relatively even distribution of weight—and may offer new design principles for hovering aircraft.

As the Wright brothers demonstrated 100 years ago, the key challenge of flight is maintaining balance. Yet, while insects took to the air 400 million years earlier, their flight stability remains a mystery because of the complex aerodynamics of their flapping wings.

The NYU researchers approached this question by creating experimental conditions needed to achieve stable hovering in mechanical flyers. To do so, they created a range of pyramid-shaped “bugs” constructed from paper that hover when placed in an oscillating column of air, mimicking the effect of flapping wings. They captured the experiment with high-speed videos in order to analyze the nature of the airflow around the bugs.

To gauge which types of structures best maintained their balance, the researchers created paper bugs with various centers of mass. Top-heavy bugs were made by fixing a weight above the pyramid, and low center-of-mass bugs bore this weight below.

Surprisingly, their results showed that the top-heavy bugs hovered stably while those with a lower center of mass could not maintain their balance.

The team showed that when the top-heavy bug tilts, the swirls of air ejected from the far side of the body automatically adjust to keep it upright.

“It works somewhat like balancing a broomstick in your hand,” explained Jun Zhang, a Professor at the Courant Institute and one of the study’s co-authors. “If it begins to fall to one side, you need to apply a force in this same direction to keep it upright.”

For bugs, it is aerodynamical forces that provide this stability.

The lessons learned from these studies could be put to use in designing stable and maneuverable flapping-wing robots.

The study’s other co-authors were postdoctoral researchers Bin Liu, who led the first round experiments, and Leif Ristroph, who came up with the stability theory with Courant Professor Stephen Childress. Another co-author, Annie Weathers, now studies mechanics at the University of Texas, Austin. She took some measurements during her last semester as an undergraduate at NYU.

The study was funded by grants from the National Science Foundation and the U.S. Department of Energy.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>