Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Science of the Cold Universe

10.02.2016

During 10 years of operation, the Atacama Pathfinder Experiment (APEX) 12 m submillimeter telescope has significantly contributed to a wide variety of astronomy science areas, ranging from the discoveries of new interstellar molecules to large and deep imaging of the submillimeter sky, leading to insights into star formation from our Milky Way to distant starburst galaxies in the early Universe.

On the occasion of this anniversary, a celebration was held at the APEX base station in Sequitor, San Pedro de Atacama, including a visit to the APEX telescope at the Chajnantor plateau, 5100 m above sea level.


Central part of the Galactic plane as seen by the APEX LABOCA camera merged with large-scale images from the Planck satellite (upper image). Southern part of the Milky Way (lower image).

Upper part: APEX Team/Csengeri et al. 2016; Lower part: ESO/Y. Beletsky (Optical Sky Image); ESO (APEX telescope); Composite image in the lower part: C. Urquhart.


Guests of the event visiting the 12 m APEX telescope, 5100 m above sea level in the Chilean Atacama desert.

ESO/APEX/Felipe Mac-Auliffe

The Atacama Pathfinder Experiment (APEX) is a radio telescope of 12 m diameter for observations at submillimeter wavelengths. It was built at a very specific site, the Chajnantor plateau in the Atacama desert in Northern Chile, at an altitude of more than 5000 m above sea level, thus providing access to the otherwise blocked submillimeter range of the electromagnetic spectrum. The Chajnantor plateau also hosts the telescopes of the Atacama Large Millimeter/submillimeter Array (ALMA).

On January 25-26, the 10th anniversary of APEX was celebrated at the APEX base station in Sequitor, San Pedro de Atacama, at a better accessible altitude of only 2500 m above sea level. A number of special guests were present at the occasion, including the German ambassador in Chile, Rolf Schulze, the President of the Max-Planck-Gesellschaft, Prof. Martin Stratmann, and the Director General of the European Southern Observatory (ESO), Prof. Tim de Zeeuw.

For the partners in the APEX collaboration, principal investigator Prof. Karl Menten and APEX project manager Dr. Rolf Güsten from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, and Prof. John Conway, Director of the Swedish Onsala Space Observatory (OSO) were attending the event. Fig. 1 shows the group of visitors at the high-altitude APEX site.

“In designing and operating APEX, ESO, OSO and the Max-Planck-Society set a perfect example of how long-term international collaboration can push the limits in astronomy”, said Martin Stratmann, President of the Max-Planck-Gesellschaft. Within the last ten years, about 2000 scientists have used data obtained with APEX for their science projects, resulting in more than 500 publications.

Major APEX results include the discovery of five new molecules in the interstellar medium and also large surveys like ATLASGAL (the “APEX Telescope Large Area Survey of the Galaxy”), or LESS (the “LABOCA Survey of the Extended Chandra Deep Field South”). Both have used the Large APEX Bolometer Camera (LABOCA) to measure the star formation activity in the Milky Way and at early epochs of the Universe. The APEX telescope and its access to the southern sky, in particular the inner part of the Milky Way and the Magellanic Clouds, is visualized in Fig. 2.

"It's a great pleasure to celebrate a decade of astronomy with APEX, and ESO is very proud to be a member of this partnership. Not only is APEX an amazingly productive telescope in its own right, but it also wonderfully complements its more recent neighbour on Chajnantor, ALMA", said ESO’s Director General, Tim de Zeeuw.

The APEX project was initiated by Karl Menten, Director at the MPIfR and head of its Millimeter and Submillimeter Astronomy Research department. The outstanding personal commitment of Karl Menten and Rolf Güsten was honored by Martin Stratmann at the 10-year anniversary ceremony in Sequitor: “I am deeply impressed by the passion and dedication that has led to the design and installation of APEX in 2003.

Right at the very beginning of operation, APEX had proven its significance in studying the southern celestial hemisphere.” Indeed, Menten recalls: “Right from the start, APEX has delivered wonderful data. And now, after ten years of research, APEX continues its important role not only as a pathfinder, but also as a complementary instrument for both, the ALMA interferometer here at Chajnantor and for the airborne observatory SOFIA.”

"From the engineering point of view, APEX has been a big success and its performance surpassed our expectations right from the beginning", said Rolf Güsten. "Within the last ten years, we have continuously improved the performance of the telescope. Today the suite of state-of-the-art receivers and camera systems places the facility at the leading edge of submillimeter astronomy.” This continuous stream of innovative technology, constantly opening new scientific opportunities had always been an integral part of the project’s philosophy.

"The collaboration over the last ten years between three very different institutions has worked extremely well, each bringing its own strengths to the project. APEX has an exciting future, both doing its own unique science and in supporting ALMA observations", said John Conway, the Director of OSO.

With the official opening of the ALMA, the importance of APEX has even increased in providing the complementary instrument to the high-resolution interferometer in order to image the large scale structure of molecular clouds and to select the target sources for a detailed investigation. “Whatever can be detected with APEX, can be imaged with superb precision with ALMA”, explained Karl Menten. “APEX truly is a pathfinder!” The importance of the telescope’s complementary role to ALMA’s mission was also stressed by Martin Stratmann: “Astronomy and astrophysics have always been core elements of our research portfolio. However, the size and diversity of experiments led to fundamental changes in the way we approach our questions in practice. Nowadays, breakthroughs demand for a large network of complementary telescopes and instruments. APEX’ role as a pathfinder shows how the Max-Planck-Gesellschaft can strike out in a new and promising direction.”


The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO) to construct and operate a modified prototype antenna of ALMA (Atacama Large Millimetre Array) as a single dish on the Chajnantor plateau at an altitude of 5,100 metres above sea level (Atacama Desert, Chile). The telescope was manufactured by VERTEX Antennentechnik in Duisburg, Germany. The operation of the telescope is entrusted to ESO.

Local Contact:

Dr. Friedrich Wyrowski,
APEX Project Scientist
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-381
E-mail: fwyrowski@mpifr-bonn.mpg.de

Dr. Rolf Güsten,
Head of the Submillimeter Technology Division
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-383
E-mail: rguesten@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten
Director and Head of Research Department „Millimeter and Submillimeter Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-297
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/2

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>