Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Jupiter Exoplanet Discovery Opens Gateway to Understanding Evolution of Planetary Systems

17.01.2011
The discovery of a Hot Jupiter exoplanet that transfers orbital momentum to its host star may hold the key to a clearer understanding of the evolution of common planetary systems, according to findings presented this week by Dr. Edward Guinan, a professor of astronomy at Villanova University in Villanova, Pa. Guinan announced the find at a press conference held at the opening of the 217th American Astronomy Society meeting in Seattle, Washington.

The discovery is of special interest because it represents a rare case in which a research team was able to make an independent age determination of the planet system by studying the system’s faint red dwarf companion star. The discovery opens a new gateway to learning about the dynamics and evolution of many other planetary systems that also contain close-in hot-Jupiter type planets.

HD189733b, the Hot Jupiter exoplanet, orbits an orange (dwarf K) star HD18973A in the constellation Vulpecula (the Fox). It orbits at only three percent of the distance of the Earth from the Sun: i.e. ~0.03 AU) with an orbital period of only 2.2 days (for comparison the Earth takes 365 days to orbit our Sun). The host star is about 63 light-years away and has a mass and diameter about ~80 percent that of our Sun. This star, invigorated by its hot Jupiter planetary companion, appears to have been spun up (rotating ~ >2x faster than our Sun – having a ~12-day rotation period) and is gaining angular momentum from magnetic and tidal interactions with its close-in Jupiter-size planet. The star, however, is being spun-up at the expense of the planet’s orbital angular energy.

The loss in the planet’s orbital momentum in the past may explain why it (and other similar planetary systems) orbit so close to their host stars. While the planet is spiraling in toward the star, and is most likely doomed, there is a possibility that the interacting magnetic fields of the star and planet could create a tidal-magnetically locked orbit–rotation that might allow the planet to survive. The most likely scenario, however, is that the planet will draw closer to the star and its atmosphere will be eroded away by the star’s intense radiation and strong winds. The planet will ultimately be ripped apart by the star’s gravity if it survives the star’s radiation and winds.

HD 189733 Ab is a relatively rare eclipsing planetary system that was discovered in 2005 (by Buchy et al.) and has attracted much attention in astronomical circles because it hosts a transiting Hot Jupiter exoplanet. The system is relatively bright (e.g. can be seen with binoculars). The eclipses by the planet permit substantial information to be gained from observing the system inside and outside the planetary eclipses. For example, spectroscopic studies by other teams (e.g. G. Tinnetti et al.) reveal that its hot atmosphere contains water vapor, carbon dioxide, sodium, and, interestingly, organic molecules of methane and particulate haze.

The Villanova team, which includes undergraduates Thomas Santapaga and Ronald Ballouz, found that this system is about over five billion years old and that the Jupiter-size planet has been estimated to be very hot at ~1,500 degrees Fahrenheit by other researchers. HD189733b has one of the shortest known orbital periods of only P = 2.22 days and is only 0.031AU from its host star (i.e. only ~8.75x the radius of the host star).

(A scale model of the system is provided.) The exoplanet system includes a cool red dwarf companion star (HD 189733B). This faint companion star is located at ~12” distance to the K-dwarf. At the distance of HD 189733 this corresponds to a separation of ~220 AU/ For comparison this 220x the distance of the Earth from the Sun / or over 5.5x further than the distance of Pluto from the Sun.) The presence of this red dwarf star makes a reliable age estimate of the binary system possible via activity-age relations developed at Villanova.

“Planetary systems like HD 189733 with short period, “hot-Jupiter” planets are very common – over a hundred have been discovered so far,” Guinan noted. He continued, “HD 189733 and dozens of other planetary systems like it, many of which were recently discovered by NASA’s Kepler mission, may also be undergoing the same process of strong magnetic interactions between their close-in large planets and their host stars.”

“The big clue that is different here is that we know the age of HD 189733 from the study of its coeval faint companion star.” This discovery should help in our endeavors to try to better understand the dynamics of other planetary systems like HD 189733, he added.”

Of the over 500 exoplanets that have been discovered to date, HD 189733 is the only one of a handful whose age and physical properties have been well determined.

“This study may help explain how and why hot Jupiters form and evolve. It may help explain this whole class of planets,” Guinan remarked.

In conducting this study the research team, which includes Villanovans Thomas Santapaga, Ronald L. Ballouz, Scott E. Engle, Laurence E. DeWarf, along with Styliani (Stella) Kafka from the Carnegie Institute in Washington, D.C.’s Department of Terrestrial Magnetism, observed the exoplanet system using the Clay Telescope at the Carnegie Institution of Washington’s Las Campanas Observatory in Chile. Observations of the eclipse timings of HD 189733 continue at Villanova using the Four College Automatic Photoelectric Telescope (FCAPT) located in southern Arizona. The eclipse timings made with this telescope over time could provide evidence that the orbital period of the system is indeed decreasing.

The research project is funded through The National Science Foundation‘s Research at Undergraduate Institutions and grants from NASA.

Guinan’s Jan. 10 presentation of the team’s findings at the 217th AAS Meeting are from a paper titled, “Some Like It Hot” – Evidence for the Shrinking Orbit of the 2.2-day Transiting Hot Jupiter Exoplanet HD 189733b – Evidence of Transfer of Planet Orbital Momentum to its Host Star” (AAS 217th Meeting Abstract 343.12, P. 566).

“One of the most amazing results of our team’s research is that a planet-size body that is only 1/1000x times the mass of the host star can make such a large impact by magnetically interacting with its host star to the extent that it causes the star to spin up, activating a strong magnetic dynamo of the star that produces the observed strong X-ray coronal emissions, large starspots and other phenomena,” Guinan concluded.

Kathleen Scavello | Newswise Science News
Further information:
http://www.villanova.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>