Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holograms set for greatness

07.11.2013
A new technique that combines optical plates to manipulate laser light improves the quality of holograms

Holography makes use of the peculiar properties of laser light to record and later recreate three-dimensional images, adding depth to conventionally flat pictures.


A scanning mirror (right) redirects green laser light onto a tiled holographic plate (top) to produce high-quality three-dimensional images.
Copyright : 2013 A*STAR Data Storage Institute

Zhi Ming Abel Lum and co©workers at the A*STAR Data Storage Institute, Singapore, have now developed a method for increasing the number of pixels that constitute a hologram, thus enabling larger and more realistic three-dimensional images1.

Holographic imaging works by passing a laser beam through a plate on which an encoded pattern, known as a hologram, is stored or recorded. The laser light scatters from features on the plate in a way that gives the impression of a real three-dimensional object. With the help of a scanning mirror, the system built by Lum and his co-workers combines 24 of these plates to generate a hologram consisting of 377.5 million pixels. A previous approach by a different team only managed to achieve approximately 100 million pixels.

The researchers patterned the plates, made of a liquid-crystal material on a silicon substrate, with a computer-generated hologram. Conventionally, holograms are recorded by scattering a laser beam off a real object. ¡°Holograms can also be mathematically calculated,¡± explains Lum. ¡°This avoids problems, such as vibrations, associated with the conventional recording method that may reduce the quality of the final reconstructed image.¡±

Each plate, also called a spatial light modulator (SLM), consisted of an array of 1,280 by 1,024 pixels ¡ª 1.3 million in total. Simply stacking the plates to increase the total number of pixels, however, created ¡®optical gaps¡¯ between them. As a workaround, the researchers tiled 24 SLMs into an 8 by 3 array on two perpendicular mounting plates separated by an optical beam splitter. They then utilized a scanning mirror to direct the laser light from the combined SLM array to several predetermined positions, just as if they had all been stacked seamlessly together (see image).

The team demonstrated that by shining green laser light onto this composite holographic plate, they could create three-dimensional objects that replayed at a rate of 60 frames per second in a 10 by 3-inch (25 by 7.5-centimeter) display window.

This relatively simple approach for increasing the pixel count of holograms should help researchers develop three-dimensional holographic displays that are much more realistic than those commercially available at present. ¡°Our next step is to improve this ¡®tiling¡¯ approach to further scale up the number of pixels of the hologram, which will lead to a larger holographic image,¡± says Lum.

Journal information

Lum, Z. M. A., Liang, X. A., Pan, Y. C., Zheng, R. T. & Xu, X. W. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling. Optical Engineering 52, 015802 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>