Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New HIV model suggests killer T cell for vaccine

29.04.2010
Limited success in modelling the behaviour of the complex, unusual and unpredictable HIV virus has slowed efforts to develop an effective vaccine to prevent AIDS.

A new improved modelling system, developed by Chinese researchers, which attempts to incorporate more of the virus' random behavioural dynamics, suggests that a particular type of T cell could be useful in the development of an AIDS vaccine.

New research published today, Thursday 29 April, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), describes how physicists and biologists from Xiamen University have been able to incorporate random patterns in the virus' mutation, and the way the virus responds to antibodies, into their model.

Gratifyingly, they have found that the new model, and the projections made by the new model for development of disease, mirror real-life, clinical behaviour of the virus.

... more about:
»Aids »CD4+ »CD8+ »HIV »HIV virus »Physic »T cells »T-cell »immune system

Clinical trials show that the HIV virus behaves quite normally during the acute first phase of human infection, normally 2-6 weeks after HIV enters the host body, during which time the strength of the virus increases and our immune systems deploy killer T cells, CD4+ T cells, to battle against it.

Outwardly, we would experience flu like symptoms and would, when we started to feel better, imagine that we are over the infection but this is not so with the HIV virus which somehow avoids total annihilation and manages to spend years rebuilding strength, slowly chipping away at our immune system.

Researchers suspect that HIV's ability to avoid annihilation has to do with its own mutating properties and its ability to preferentially target CD4+ T cells, the master regulators of our immune system.

The model-makers from Xiamen University have created a simulation which takes a wider range of variables into consideration and while they are in agreement that both HIV's mutating and T-cell targeting ability are crucial to the virus' devastating success rate, they have found a possible chink in the virus' armour.

To date, no models have been able to discern between the behavioural patterns of two different types of T-cells, both of which are involved in our internal fights against HIV.

These are CD4+ T and CD8+ T cells. Patterns emerging from these new models now suggest that CD8+T cells could be used to stimulate a stronger response against the virus.

This particular type of T-cell does not appear to be as preferentially targeted by HIV as its counterpart and also appears to be more actively involved in putting the virus down during the first acute phase of the infection.

As the researchers write, "We assess the relative importance of various immune system components in acute phase and have found that the CD8+ T cells play a decisive role to suppress the viral load. This observation implies that stimulation of a CD8+T cell response might be an important goal in the development of an effective vaccine against AIDS."

The article will be permanently free to read from Thursday 29 April at http://iopscience.iop.org/1367-2630/12/4/043051

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

Further reports about: Aids CD4+ CD8+ HIV HIV virus Physic T cells T-cell immune system

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>