Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HiRISE Camera Captures High-Resolution 3D Images of Mars

09.12.2008
The High Resolution Science Imaging Experiment, or HiRISE, team based at The University of Arizona today released 362 three-dimensional images of Mars taken by the HiRISE camera on NASA's Mars Reconnaissance Orbiter.

Other Mars-orbiting cameras have taken 3D views of Mars, but the HiRISE camera - the most powerful camera ever to orbit another planet - can resolve features as small as one meter, or 40 inches, across.

"It's really remarkable to see Martian rocks and features on the scale of a person in 3D," said Alfred McEwen of UA's Lunar and Planetary Laboratory, HiRISE principal investigator. "The level of detail is just much, much greater than anything previously seen from orbit."

The 3D images, or anaglyphs, can be viewed on the HiRISE Web site
(http://hirise.lpl.arizona.edu/anaglyph) with inexpensive color filter glasses commonly used for viewing 3D images and movies. The HiRISE Web site links to information on where to purchase and how to make 3D red-cyan filter glasses.

Without 3D glasses, the Mars images appear out of register.

(In Tucson, UA's Flandrau Science Center, 1601 E. University Blvd., and Starizona, 5757 N. Oracle Road, sell red-cyan filter glasses for $2 each.)

Seen in HiRISE 3D, Mars becomes a collection of deep panoramic views that leap out from the computer screen.

"You'd swear you could touch the terrain," HiRISE operations manager Eric Eliason said.

Striking stereo views include:

* Sixty-meter tall, or 200-foot-tall fractured mounds, probably composed of solidified lava, on the southern edge of Elysium Planitia. The fractured surface suggests that lava pushed the surface into domes, uplifting some sides along the same fracture higher than others.

* Spectacular layers exposed on the floor about 2-and-a-half miles, or 4 kilometers, below the rim of Candor Chasma, which is a large canyon in the Valles Marineris system. The canyon may once have been filled to its rim by sedimentary layers of sand and dust-sized particles, but these have since eroded, leaving patterns of elongated hills and layered terrain that has been turned and folded in many angles and directions.

* Groups of gullies at different elevations along the wall of an unnamed crater in Terra Cimmeria. The anaglyph image provides three-dimensional perspective on the depth of the gullies and the amount of material deposited below the gullies.

Geological evidence suggests that the gullies may have formed by subsurface water, rather than by snow or ice melting on the surface.

Other dramatic anaglyphs show a huge jumbled mass of rock that includes megabreccia at a central peak in Ritchey crater, ejecta-formed channels and mudflows at Hale crater, tightly folded rock layers lining the floor of Tithonium Chasm, "spiders" created by carbon dioxide venting through south polar layered deposits, and Martian glacier flows.

Eliason and the team at HiROC, the High Resolution Imaging Operations Center on the UA campus, began processing stereo images in October. They automated some of the software used in processing HiRISE images so two images of a stereo pair could be fed into the software "pipeline" and correlated automatically.

"The real advance here is making this process semi-automated so we can really crank through all these huge images," McEwen said. Producing anaglyphs from stereo pairs is otherwise a tedious, time-consuming effort.

The HiRISE camera has so far taken 950 stereo image pairs. The camera features a half-meter, or 20-inch, diameter primary mirror and a focal plane mechanism that can acquire up to a 3.6 megapixel image in about 11 seconds.

The anaglyphs are among 1,642 observations containing 3.6 terabytes of data and 148,000 image products that HiRISE released today to the Planetary Data System, or the PDS, the NASA mission data archive.

Since HiRISE began the science phase of its mission in November 2006, the HiRISE team has released a total 867,430 image products, or 30.2 terabytes of data.

That is by far the greatest volume of data a space experiment has delivered to the PDS, and well more than twice the data volume some HiRISE team members expected to get during the primary science phase.

The HIRISE camera was designed to take images at high-convergence angles so researchers can calculate the thickness of surface features to within about 10 inches, or 25 centimeters. High-convergence angles used to get quantitative measurements aren't always best for making anaglyphs, McEwen said.

In addition, if the two stereo images on two different orbits were taken far enough apart in time, the illumination or air opacity may have changed, or frost or dust devils may have appeared in one of the images, so paired images don't always match that well, he added.

"Nevertheless, many of these stereo anaglyphs are very interesting and useful to us in understanding the topography," McEwen said.

"There's a lot of science to be done by just looking at these directly and understanding what's up and what's down," he added. "Anaglyphs can definitely change how we interpret things, and help us focus on how to proceed when it comes to prioritizing some science tasks."

Binocular vision gives humans wearing 3D color glasses the ability to see anaglyphs in three dimensions the same way they see in three dimensions through a View-Master viewer or a Victorian-era stereoscope. The same scene is viewed in two pictures taken from slightly different angles. Each eye has its own slightly different view, which the brain fuses together into a single picture with depth.

With the colored glasses, the red filter for the left eye sees only red in the picture, the cyan filter for the right eye sees only blue-green in the picture, and the brain correlates the images. The glasses work for viewing stereo pictures in print or on TV, movie and computer screens.

The Mars Reconnaissance Orbiter is managed by the Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems of Denver built the spacecraft. The UA operates the HiRISE camera, built by Ball Aerospace and Technologies Corp. of Boulder, Colo.

SCIENCE CONTACTS:
Alfred McEwen (520-621-4573; mcewen@pirl.lpl.arizona.edu) Eric Eliason (520-626-0764; eeliason@pirl.lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://hirise.lpl.arizona.edu/anaglyph
http://www.nasa.gov/mro

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>