Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hints of universal behavior seen in exotic 3-atom states

26.09.2011
A novel type of inter-particle binding predicted in 1970 and observed for the first time in 2006, is forming the basis for an intriguing kind of ultracold quantum chemistry.

Chilled to nano-kelvin temperatures, cesium atoms---three at a time---come together to form a bound state hundreds or even thousands of times larger than individual atoms. Unlike the case of ordinary atoms, wherein electrons are bound to a nucleus in a spectrum of energy levels on the order of an electron volt (that is, it would typically take an eV of energy to free the electron), the cesium triplets feature energy levels that are measured in trillionths of an electron volt (peV). Stranger still, a new experiment observing four such cesium states reports that the states' sizes are roughly the same. This has taken theorists by complete surprise.

In the seventeenth century Isaac Newton derived the classical force laws used to calculate the force between two objects. Calculating the behavior of three-body groupings such as the Moon/Earth/Sun system was much harder; indeed Newton never succeeded. Nowadays such problems can be studied with powerful computers, but only numerical simulations are possible, and not exact, analytical solutions.

In 1970, however, Russian physicist Vitaly Efimov predicted that under some special conditions, three bodies, such as atoms at ultralow temperatures, could be made to enter into stable states whose behavior could be calculated with remarkable ease. Then in 2006 exactly such states were actually observed by scientists at the University of Innsbruck. Now, these researchers have extended their work and demonstrated that the "three-body parameter," used to describe how the three participating bodies interact, varies in a consistent way regardless of the atomic species used.

Paul Julienne, a scientist at the Joint Quantum Institute (JQI), operated by the University of Maryland and the National Institute of Standards and Technology (NIST), contributed theoretical help to the Innsbruck scientists conducting the experiment, a team led by Rudolf Grimm. "None of the experts in three-body physics had expected this kind of universal behavior to show up in these 3-atom systems," Julienne said. "This behavior came as a big surprise." And the universality, in turn, might suggest the existence of some new kind of ultracold chemistry at work.

Efimov's 1970 work met with much skepticism, especially since his prediction specified that three particles could form stable partnerships even though none of the two-particle matchups were stable. That is, 3 particles could accomplish what 2 particles could not. This novel arrangement has been compared to the "Borromean Rings," a set of three rings used on heraldic symbol for the Borromeo family during the Italian Renaissance. The three rings hold together unless any one of the rings is removed.

Efimov's prediction applies not just to atoms but to any 3 particles. For example, helium-6, a semi-stable nucleus consisting of 2 protons and 4 neutrons, can be made by from a helium-4 nucleus and 2 extra neutrons. The 2 neutrons cannot form a stable composite; neither can He-4 plus 1 extra neutron. But the three-body He4-n-n system is stable, at least for a while.

Such Borromean nuclei have been known for some time, but atoms have turned out to be more useful in pursuing the novel interactions called for in Efimov's theory. That's because atoms can be chilled to nano-kelvin temperatures in traps and made to interact with great precision. As atoms cool down, they get larger---at least in a quantum sense: as waves, their equivalent wavelength can be many times larger than their nominal particle size (a hydrogen atom is about 0.1 nm across). Furthermore, by applying an external magnetic field, subtle interactions among neutral atoms can be achieved.

Such interactions, called Feshbach resonances, were used to bring cesium atoms together, three at a time, in Efimov states. These atoms were part of a vapor held at temperatures of tens of nano-K. In 2006 the Innsbruck team reported seeing one such troika of atoms. Now, in the 16 September 2011 issue of Physical Review Letters, the Innsbruck-JQI-Durham researchers are reporting the observation of three more state of 3 atoms bound together.

These trimers are quantum objects; they have no classical counterpart. The weak binding of the super-cold Cs atoms is described in terms of a parameter, a, called the scattering length. If a is positive and large (much larger than the nominal range of the force between the atoms), weak binding of atoms can happen. If a is negative, a slight attraction of two atoms can occur but not binding. If, however, a is large, negative, and three atoms are present, then the Efimov state can appear. Indeed an infinite number of such states can occur. The Efimov state has an energy spectrum, as if it were a chemical element all by itself, with each binding energy level scaling with the value of a. This kind of universal behavior was expected.

The effective size of these Efimov-triplets is referred to as the three-body parameter. In the case of the four cesium states seen so far, the value is just about the same, about 50 nm, or about 500 times the size of a hydrogen atom. This, combined with the three-body-parameter values observed in experiments for lithium and possibly for other elements being studied right now, suggests that while adjusting for the size of the respective atoms all the species are behaving in the same way. This kind of universality was totally unexpected.

"It is really amazing how the new research field developed since we found the first traces of Efimov states, "said Grimm. "Now things have become reality, things we did not even dream about five years ago."

"Universality of the Three-Body Parameter for Efimov States in Ultracold Cesium," by M. Berninger, A. Zenesini,1 B. Huang, W. Harm, H.-C. Na¨gerl, F. Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, 16 September 2001 Physical Review Letters.

The Joint Quantum Institute (JQI), located in College Park, Maryland, is operated by the University of Maryland and the National Institute of Standards and Technology (NIST).

Phillip F. Schewe | EurekAlert!
Further information:
http://jqi.umd.edu/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>