Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The HINTS project "Next Generation Hybrid Interfaces for Spintronic Applications"

19.09.2012
The HINTS project aims at advancing Spintronics by developing new hybrid organic-inorganic (HOI) materials featuring strong and tuneable spin-transfer efficiency at the interfaces.

The project HINTS, launched last 1st June 2011, has achieved its first year of life. The first results have been achieved and have been presented in Valencia, the 31st may 2012. The HINTS project, full title: "Next Generation Hybrid Interfaces for Spintronic Applications", is funded with 3,874,360.00 Euro granted by the European Commission in the 7th Framework Programme.

HINTS aims at advancing Spintronics by developing new hybrid organic-inorganic (HOI) materials featuring strong and tuneable spin-transfer efficiency at the interfaces. One of the main characteristics of all organic based ICT devices is the intrinsic hybrid combination of organic active materials with inorganic electrodes. Their greatest advantage is the possibility of low-cost processing and the enormous choice of molecules, most of which are still unexplored.

Crucially most of the properties of the hybrids are determined by their interfaces so that the ability to tailor the degree of interaction between organic and inorganic materials impacts the functioning of entire devices and of the electronic properties of the composite materials in general.

The ambitious approach of HINTS is implemented by designing new materials with improved spin transfer efficiency and transport. HINTS will constantly benchmark the material parameters and properties with device demands. Thus the development and the selection of HOI materials will proceed in close collaboration with and with constant feedback from the industrial and SME partners, and the entire consortium will maintain awareness of the intermediate and final ICT needs (device aspects). The project is developing hybrid materials which exhibit the following interface functionalities:

- controlled and well defined spin selectivity as a consequence of material combination;

- tuneable interface energy barriers for controlled charge and spin injection (dipole tailoring);

- spin scattering and spin control by the insertion of monolayers of high-spin-molecules at the interfaces;

- control of the non-linear interplay of charge and spin transfer and its use for multifunctional effects.

The project has now achieved the first year of life and this was characterized by a set of encouraging results among which we can mention 1) the achievement of strong GMR modulation via both proxity effect and electrical gating at spin injecting and collecting hybrid interfaces, 2) promissing preliminary results of SAM assisted TMR junctions, 3) extraordinary first observation of the GMR inversion in a GMR device via electrical field gating and 4) first modification/adjustment of the technological tools (effusion cells) as required by the needs driven by HINTS objectives.

The HINTS project (full title: "Next Generation Hybrid Interfaces for Spintronic Applications") is funded with 3,874,360.00 Euro granted by the European Commission in the 7th Framework Programme, coordinated by

Dr. Valentin Dediu of the Institute for the Study of Nanostructured Materials - ISMN (Italy), and carried out by a consortium of 14 leading research institutions coming from 8 Countries, each of them with specific roles and different levels of involvement. The consortium is composed by 7 Universities, 3 Research Centers and four companies spread across Europe. The FP7 project HINTS started on the 1st of June 2011. The project held its kick-off meeting in Bologna (Italy), last 23rd – 24th June 2011.

Thomas Jung | TU Kaiserslautern
Further information:
http://www.hintsproject.eu/

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>