Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First hint of the Higgs boson particle

09.01.2012
Particle physicists at Mainz University are excited: 50 years after its prediction, the Higgs boson gradually takes shape

The answer to one of the most exciting questions in particle physics seems almost close enough to touch: Scientists at the Geneva research center CERN have observed first signs of the Higgs boson and now believe that they will soon be able to prove the existence of the elementary particle they have been trying so hard to isolate. It is the last missing piece in the puzzle of the Standard Model of particle physics to explain the structure of matter.

A discovery would be sensational news. "We indeed may have observed the first evidence of the Higgs particle, but it is still too early for a definitive statement," says Professor Dr. Volker Büscher from the Institute of Physics at Johannes Gutenberg University Mainz (JGU) in Germany. "And if this evidence turns out to be correct, the data now being analyzed will for the first time provide information about the mass of the Higgs boson," adds Professor Dr. Stefan Tapprogge. At Mainz University, some 50 physicists participate in CERN's research, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle.´

The particle was predicted almost 50 years ago and is named after the British physicist Peter Higgs. Since then, scientists all over the world have been searching for it. Its discovery would explain the origin of the masses of all other elementary particles. Just two years after its start, proton-proton collisions at the Large Hadron Collider (LHC) have now delivered the results which raise scientists' expectations. "At this point in time, we can make two statements," Büscher says. "First, if the Higgs boson actually has the characteristics it is assumed to have, then its mass must be between 115 and 131 gigaelectron volts – a much smaller window than just a year ago. Second, we have found a very intriguing excess of events, which could be the first direct evidence of a Higgs boson with a mass around 125 GeV." The experiments at CERN will continue next year. If the evidence is confirmed, the Higgs boson would be about 125 times as heavy as a proton.

In addition to this new data from the ATLAS detector, the second large particle detector at LHC, the Compact Muon Solenoid (CMS), has revealed similar indications. Confirmation would be a dream come true for the scientists working with Volker Büscher and Stefan Tapprogge. Many have dedicated their academic careers to the hunt for the Higgs particle – and are involved right now when things get really exciting. "This is a great moment for us all, and it would be wonderful if the observations were confirmed," says Tapprogge. Scientists are not yet speaking of a discovery, because it is still too early: The number of events observed is not yet large enough to statistically rule out a random effect. However, the fact that two independent experiments, ATLAS and CMS, both point in the same direction, creates excitement and raises hopes that this could indeed be the mysterious Higgs particle.

The Higgs boson was predicted in 1964. Within the theory, it would give mass to the other elementary particles of the Standard Model. According to the physicists, the entire universe is filled with the so-called Higgs field. Depending on how strong the individual elementary particles couple to the Higgs boson, they would have more or less mass. If the missing particle is actually discovered, this would not only confirm a model but would also mark the beginning of a new field of research. The LHC provides ideal conditions to study the Higgs field and the origin of mass in detail, especially with the even higher proton beam energy scheduled for 2014 onwards.

The researchers of the working group for Experimental Particle and Astroparticle Physics (ETAP) at Johannes Gutenberg University Mainz are involved in particular in the ATLAS experiment, one of two major experiments at the LHC. The ATLAS detector is 46 meters long, 25 meters high, and 25 meters wide. It is able to detect and precisely measure new particles produced during proton collisions. A total of approximately 3,000 researchers from all over the world are taking part in the ATLAS experiment.

The work of the ETAP group is integrated into the Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA), which has successfully made it into the final selection round of the German Federal Excellence Initiative.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14894.php
http://www.cern.de/
http://atlas.ch/

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>