Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Highway for ultracold atoms in light crystals


LMU/MPQ-physicists succeed in realizing an analogue of the Meissner effect by measuring edge currents in a ladder-like crystal of light.

When a superconductor is exposed to a magnetic field, a current on its surface appears which creates a counter field that cancels the magnetic field inside the superconductor.

Schematic representation of the light crystal with ladder-like shape. The blue and yellow spheres represent the atoms traveling in opposite directions, as in the Meissner phase. In the experiment the strength of the current was measured, which indicated a transition from the vortex to the Meissner phase. (Graphic: MPQ, Quantum Many Body Systems Division)

This phenomenon, known as “Meissner-Ochsenfeld effect” after its discoverers, was first observed in 1933. This quantum effect has found applications in a large variety of fields, ranging from magnetic levitation of objects to medicine and industry.

For the first time, scientists in the group of Professor Immanuel Bloch (Ludwig-Maximilians-University, Munich and Max Planck Institute of Quantum Optics, Garching) in collaboration with theoretical physicist Dr. Belén Paredes from the Institute for Theoretical Physics (IFT) in Madrid have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms.

The system realized by the team in fact constitutes the minimal system in which such a Meissner analogue can be observed and realizes theoretical predictions dating back more than 20 years. Furthermore, the scientists have been able to observe a transition from this Meissner phase to a vortex phase where the ‘screening’ of the external field breaks down. (Nature Physics, 2998 (2014)).

When a superconductor is cooled down below its critical temperature, which is typically on the order of a few tens of Kelvin, it undergoes a phase transition to a superconducting state. In that state, in addition to be able to transport electric currents without losses, the material presents a very special feature: when it is exposed to an external magnetic field, a current appears on its surface that fully cancels the field in its core.

As the external field is increased, the strength of the current also increases. This feature, called Meissner effect, is of key importance in condensed matter physics. For some special types of superconductors this effect can only exist up to a critical strength of the external field. If the field is increased above that value, the current flows and spins around imaginary axis forming a vortex-like structure. In that vortex phase, the external field is only partially cancelled.

These two behaviours have been already observed for real materials, and are of fundamental interest for the superconducting properties. “However, this kind of phenomenon had never been observed with ultracold atoms in optical crystals”, explains Marcos Atala, a scientist in the team of Professor Bloch.

In their experiments, an extremely cold gas of Rubidium atoms was loaded into an optical lattice: a periodic structure of bright and dark areas, created by the interference of counter-propagating laser beams. In this lattice structure, the atoms are held in either dark or bright spots, depending on the wavelength of the light, and therefore align themselves in a regular pattern.

The resulting periodic structure of light resembles the geometry of simple solid state crystals where the atoms play the role of the electrons, making it an ideal model system to simulate condensed matter physics. In this case, the experimentalists chose a special lattice configuration, which creates an optical crystal with a ladder-like shape (see Fig. 1).

When the electrons in a material are exposed to a magnetic field, they feel the effect of the Lorentz force, which acts perpendicular to their direction of motion, causing them to move in circles. However, the atoms in the optical crystal are electrically neutral and they do not feel that force.

The experimentalists overcome this difficulty by implementing a special laser configuration that simulates the effect of a magnetic field: they used a pair of lasers that give a momentum kick to the atoms when they move from the left to the right leg of the ladder, and give a kick in the opposite direction when they move from the right to the left leg. These kicking lasers simulate the effect of a magnetic field of several thousand Tesla, something that is practically impossible to achieve with real magnetic fields.

The ladder system that the experimentalists realized also presents a Meissner- and a vortex-like phase, with the only difference that the neutral current here does not produce a backaction and thereby a screening of the magnetic field. In order to see the transition between the two phases, the Munich researchers implemented a protocol to measure the current on the individual legs of the ladder.

That current is maximal in the Meissner phase and has a vortex structure in the vortex phase. The measurement idea was to prepare the atoms in either the Meissner or the vortex phase and then to suddenly split the ladder into an array of isolated two-site systems, similar to when a flowing liquid is suddenly stop by an array of barriers. This method allowed the scientist to determine the strength of the current along the legs of the ladder, and they were able to clearly identify a transition from the vortex phase to the Meissner phase.

This experiment marks an important step forward in the simulation of real material properties using ultracold atoms in optical lattices, and opens the path to the observation of many other phenomena like the quantum Hall effect or even the fractional quantum Hall effect if interparticle interactions are present.

Furthermore, by combining this technique with the new available single site resolution, experimentalist could resolve the vortex structure in the ladder locally. “The new experimental probes help us to gain a better understanding of phase transitions and dynamics of quantum matter under the action of extreme magnetic fields”, points out Prof. Immanuel Bloch.

Original publication:

Marcos Atala, Monika Aidelsburger, Michael Lohse, Julio T. Barreiro, Belén Paredes and Immanuel Bloch
Observation of chiral currents with ultracold atoms in bosonic ladders
Nature Physics 2998 (2014), Advance Online Publication


Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 München, and
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0) 89 / 32 905 -138

Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
28049 Madrid, Spain
Phone: +34 91 299 9862

Dipl. Phys. Marcos Atala
LMU Munich
Phone: +49 89 2180 6133

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

Further reports about: Highway Max-Planck-Institut Phone Physics Quantenoptik Quantum crystals lattice strength structure transition

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

More VideoLinks >>>