Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly Sensitive Graphene Biosensors Based on Surface Plasmon Resonance

05.05.2011
Graphene, the one-atom-thick carbon lattice that is the subject of last year’s Nobel Prize in Physics, has found application in surface plasmon resonance (SPR) biosensing.

Adding a few graphene layers onto the conventional gold-film SPR biosensor will boost up its sensitivity dramatically. The improved sensitivity comes from the graphene layer’s increased adsorption of biomolecules and the graphene layer’s optical modification to the SPR.

Surface plasmon resonance (SPR) biosensors are optical sensors, which use surface plasmon polariton waves to probe the interactions between biomolecules and the sensor surface. In the conventional SPR biosensor configuration, a thin metallic film is coated on one side of the prism, separating the sensing medium and the prism. The metallic film is typically made from noble metals, such as gold and silver, which support the propagation of surface plasmon polariton at visible light frequencies. But, gold is usually preferred because it has good resistance to oxidation and corrosion in different environments.

However, biomolecules adsorb poorly on gold. This drawback limits the sensitivity of the conventional SPR biosensor.

... more about:
»Biosensors »Plasmon »Resonance »SPR »Surface »graphene »sensitive

An attractive way to improve the sensitivity of SPR biosensor is to functionalize the gold film with biomolecular recognition elements (BRE) in order to enhance the adsorption of biomolecules on the gold surface.

Here, we propose to use graphene as the BRE, where a sheet of graphene is coated on the gold surface in the conventional SPR biosensor setup. Graphene-on-Au (111) has been proposed and fabricated recently, which is shown to stably adsorb biomolecules with carbon-based ring structures (e.g. ssDNA).

This special property of graphene enables a greater refractive index change near the graphene | sensing medium interface than that of the conventional SPR biosensor. Moreover, the coating of the gold surface with graphene will also modify the propagation constant of surface plasmon polariton (SPP); thereby change the sensitivity to refractive index change.

For more detail, including an in-depth explanation of how the proposed graphene-on-gold SPR biosensor functions, please see the pdf:
http://www.researchsea.com/html/download.php/id/155/research/
Graphene_SPR_sensor.pdf

Joanne Tan | Research asia research news
Further information:
http://www.ihpc.a-star.edu.sg
http://www.researchsea.com

Further reports about: Biosensors Plasmon Resonance SPR Surface graphene sensitive

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>