Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-temperature Superconductor Spills Secret: A New Phase of Matter

25.03.2011
Scientists have found the strongest evidence yet that a puzzling gap in the electronic structures of some high-temperature superconductors could indicate a new phase of matter. Understanding this “pseudogap” has been a 20-year quest for researchers who are trying to control and improve these breakthrough materials, with the ultimate goal of finding superconductors that operate at room temperature.

"Our findings point to management and control of this other phase as the correct path toward optimizing these novel superconductors for energy applications, as well as searching for new superconductors," said Zhi-Xun Shen of the Stanford Institute for Materials and Energy Science (SIMES), a joint institute of the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University. Shen led the team of researchers that made the discovery; their findings appear in the March 25 issue of Science.

Superconductors are materials that conduct electricity with 100 percent efficiency, losing nothing to resistance. Currently used in medical imaging, highly efficient electrical generators and maglev trains, they have the potential to become a truly transformative technology; energy applications would be just one beneficiary. This promise is hampered by one thing, though: they work only at extremely low temperatures. Although research over the past 25 years has developed “high-temperature superconductors” that work at warmer temperatures, even the warmest of them—the cuprates—must be chilled half-way to absolute zero before they will superconduct.

The prospect of being able to dramatically increase that working temperature, thus making superconductors easier and cheaper to use, has kept interest in the cuprates at the boiling point. But to change something you have to understand it, and a puzzle called the pseudogap has stood in the way.

One hallmark of a superconductor is a so-called "energy gap" that appears when the material transitions into its superconducting phase. The gap in electron energies arises when electrons pair off at a lower energy to do the actual job of superconducting electric current.

When most of these materials warm to the point that they can no longer superconduct, the electron pairs split up, the electrons start to regain their previous energies, and the gap closes. But in the cuprates, the gap persists even above superconducting temperatures. This is the pseudogap, and it doesn't fully disappear until a second critical temperature called T* (pronounced "T-star") is reached. T* can be 100 degrees higher than the temperature at which superconductivity begins.


Superconductors conduct electricity with 100 percent efficiency, losing none of it to resistance. The few high-temperature superconducting wires on the right conduct as much current as all the copper cables on the left. (Photo courtesy of American Superconductor.)

The electrons in the pseudogap state aren’t superconducting—so what are they doing? That’s the puzzle that's had condensed matter physicists scratching their heads for two decades.

"A clear answer as to whether such a gap is just an extension of superconductivity or a harbinger of another phase is a critical step in developing better superconductors," Shen said.

In work done at SLAC's Stanford Synchrotron Radiation Lightsource, Lawrence Berkeley National Laboratory's Advanced Light Source and Stanford University, Shen's team looked at a sample of a cuprate superconductor from the inside out. They examined electronic behavior at the sample's surface, thermodynamic behavior in the sample's interior, and changes to the sample's dynamic properties over time using a trifecta of measurement techniques never before employed together.

"There is much to be said about using the same material and three different techniques to tackle the problem," commented condensed matter physicist Sudip Chakravarty of the University of California Los Angeles, who was not involved in the research. "Even after decades of research this is a key unanswered question."

The team's findings: electrons in the pseudogap phase are not pairing up. They reorganize into a distinct yet elusive order of their own. In fact, the new order is also present when the material is superconducting; it had been overlooked before, masked by the behavior of superconducting electron pairs.

Simply knowing the pseudogap indicates a new phase of matter provides a clear signpost for follow-up research, according to Ruihua He, a post-doctoral researcher at the Advanced Light Source and first author of the paper. He outlined the next steps: "First to-do: uncover the nature of the pseudogap order. Second to-do: determine whether the pseudogap order is friend or foe to superconductivity. Third to-do: find a way to promote the pseudogap order if it's a friend and suppress it if it's a foe."

According to Makoto Hashimoto, a coauthor on the paper and SSRL staff scientist, their work "makes the high-temperature superconductor roadmap much clearer than before, and a good roadmap is important for any big science project."

This advance was made possible by a strong collaboration between Shen's team and teams of researchers from SIMES (led by Aharon Kapitulnik), LBNL (led by Joseph Orenstein) and the ALS (led by Zahid Hussain), the sample growers from the National Institute of Advanced Industrial Science and Technology (led by Hiroshi Eisaki), as well as SIMES theorists Steve Kivelson and Thomas Devereaux.

The Stanford Institute for Materials and Energy Science, SIMES, is a joint institute of SLAC National Accelerator Laboratory and Stanford University. Research at SIMES is supported in part by the U.S. Department of Energy's Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Lawrence Berkeley National Laboratory, a U.S. Department of Energy national laboratory managed by the University of California for the DOE Office of Science, is a world leader in innovative science, advanced computing, and technology that makes a difference.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>