Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech microscope measures electron oscillations

12.08.2011
Researchers from Bielefeld, Kaiserslautern and Würzburg have developed a novel high-tech microscope: It magnifies objects a million times and shows movements with a retardation of one million billion times. Reason enough for top magazine "Science" to report on the invention.

The new technology allows tracking extremely fast processes in miniature objects – with an unparalleled spatial and temporal resolution. "For the first time we were able to determine the duration of electron oscillations in a single nano structure", says Professor Tobias Brixner of the Institute for Physical and Theoretical Chemistry of the University of Würzburg.


Ultra-short laser pulses (red) are used to measure electron oscillations (red balls) at the surface of a nano-structure. Image: Walter Pfeiffer, Bielefeld University

The analyses have shown that the collective electron movement after exciting a silver nano structure with light lasts up to 20 times longer in certain places than was thought. The duration of electron oscillations is of interest not only for basic research. It also has a significant influence on the efficiency of energy transport processes as occur, for instance, in photovoltaic cells or during the photosynthesis of plants.

"Our new method will allow us in the future to track very fast processes in many natural and artificial nano-structured materials", the scientists explain.

The research team and its sponsors

The teams of Professor Martin Aeschlimann (Kaiserslautern), Tobias Brixner (Würzburg) and Walter Pfeiffer (Bielefeld) presented their new analysis method on 11 August 2011 in the internationally renowned "Science" magazine that can be read online at http://www.sciencexpress.org. The German research association (DFG) has supported the project of the three research teams within the scope of its priority program "Ultrafast Nano-Optics".

Electron microscopy combined with laser flashes

How did the cooperation partners accomplish this success? They combined the advantages of an electron microscope with the excitation of ultra-short laser flashes and the high time resolution that can be achieved by this. This enables them to detect structures ten times smaller than would be possible using optical microscopes. The progress of the object properties can thus be followed with the extremely high time resolution of a few femtoseconds – an inconceivably short period of time during which a jet plane travels a distance smaller than the diameter of an atom", as Professor Brixner compares.

In order to be able to track ultrafast processes in the microcosm, the researchers use a complex sequence of ultra-short laser pulses which experts refer to as "coherent two-dimensional nanoscopy". The physicists and physical chemists finally accomplished their goal by developing a new sequence of laser pulses and the proof of the electrons emitted in this process.

„Coherent Two-Dimensional Nanoscopy“, Martin Aeschlimann, Tobias Brixner, Alexander Fischer, Christian Kramer, Pascal Melchior, Walter Pfeiffer, Christian Schneider, Christian Strüber, Philip Tuchscherer, Dmitri V. Voronine, Science, August 11, 2011, DOI 10.1126/science.1209206

Contact

Prof. Dr. Tobias Brixner, University of Würzburg, T +49 (0)931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Prof. Dr. Martin Aeschlimann, University of Kaiserslautern, T +49 (0)631 205-2322, ma@physik.uni-kl.de

Prof. Dr. Walter Pfeiffer, University of Bielefeld, T +49 (0)521 106-6908, pfeiffer@physik.uni-bielefeld.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de
http://www.sciencexpress.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>