Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-speed solar winds increase lightning strikes on Earth


Scientists have discovered new evidence to suggest that lightning on Earth is triggered not only by cosmic rays from space, but also by energetic particles from the Sun.

University of Reading researchers found a link between increased thunderstorm activity on Earth and streams of high-energy particles accelerated by the solar wind, offering compelling evidence that particles from space help trigger lightning bolts.

Where does lightning come from?

Publishing their study today, 15 May 2014, in IOP Publishing's journal Environmental Research Letters, researchers from Reading's Department of Meteorology found a substantial and significant increase in lightning rates across Europe for up to 40 days after the arrival of high-speed solar winds, which can travel at more than a million miles per hour, into the Earth's atmosphere.

A summary of the findings can be found in the associated Video Abstract:

Although the exact mechanism that causes these changes remains unknown, the researchers propose that the electrical properties of the air are somehow altered as the incoming charged particles from the solar wind collide with the atmosphere.

The results could prove useful for weather forecasters, since these solar wind streams rotate with the Sun, sweeping past the Earth at regular intervals, accelerating particles into Earth's atmosphere. As these streams can be tracked by spacecraft, this offers the potential for predicting the severity of hazardous weather events many weeks in advance.

Lead author of the study, Dr Chris Scott, said: "Our main result is that we have found evidence that high-speed solar wind streams can increase lightning rates. This may be an actual increase in lightning or an increase in the magnitude of lightning, lifting it above the detection threshold of measurement instruments.

"Cosmic rays, tiny particles from across the Universe accelerated to close to the speed of light by exploding stars, have been thought to play a part in thundery weather down on Earth, but our work provides new evidence that similar, if lower energy, particles created by our own Sun also affect lightning.

"As the Sun rotates every 27 days these high-speed streams of particles wash past our planet with predictable regularity. Such information could prove useful when producing long-range weather forecasts."

Professor Giles Harrison, head of Reading's Department of Meteorology and co-author of the ERL article, said: "In increasing our understanding of weather on Earth we are learning more about its important links with space weather. Bringing the topics of Earth Weather and Space Weather ever closer requires more collaborations between atmospheric and space scientists, in which the University of Reading is already leading the way."

To arrive at their results, the researchers analysed data on the strikes of lightning over the UK between 2000 and 2005, which was obtained from the UK Met Office's lightning detection system. They restricted their data to any event that occurred within a radius of 500 km from central England.

The record of lightning strikes was compared with data from Nasa's Advanced Composition Explorer (ACE) spacecraft, which lies between the Sun and the Earth and measures the characteristics of solar winds.

After the arrival of a solar wind at the Earth, the researchers showed there was an average of 422 lightning strikes across the UK in the following 40 days, compared to an average of 321 lightning strikes in the 40 days prior the arrival of the solar wind. The rate of lightning strikes peaked between 12 and 18 days after the arrival of the solar wind.

The solar wind consists of a constant stream of energetic particles—mainly electrons and protons—that are propelled from the Sun's atmosphere at around a million miles per hour. The streams of particles can vary in density, temperature and speed and sweep past Earth every 27 days or so, in line with the time it takes the Sun to make one complete rotation relative to the Earth.

The Earth's magnetic field provides a sturdy defence against the solar wind, deflecting the energetic particles around the planet; however, if a fast solar stream catches up with a slow solar stream, it generates an enhancement in both the material and the associated magnetic field.

In these instances, the energetic particles can have sufficient energies to penetrate down into the cloud-forming regions of the Earth's atmosphere and subsequently affect the weather that we experience.

"We propose that these particles, while not having sufficient energies to reach the ground and be detected there, nevertheless electrify the atmosphere as they collide with it, altering the electrical properties of the air and thus influencing the rate or intensity at which lightning occurs," said Dr Scott.

The increase in the rate of lightning after the arrival of solar winds was corroborated by a significant increase in the days in which thunder was heard, which were recorded at UK Met Office stations around the UK.


From Thursday 15 May, this paper can be downloaded from

Notes to Editors


1. For further information, a full draft of the journal paper or contact with one of the researchers, contact: Michael Bishop, IOP Press Officer, Tel: 0117 930 1032 email: Peter Castle, University of Reading Press Officer, Tel: +44 (0)118 378 5757, email: For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer,, with your name, organisation, address and a preferred username.

Evidence for solar wind modulation of lightning

3. The published version of the paper 'Evidence for solar wind modulation of lightning' (C J Scott et al 2014 Environ. Res. Lett. 9 055004) will be freely available online from Thursday 15 May. It will be available at

Environmental Research Letters

4. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.

IOP Publishing

5. IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research. We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world. IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to

Access to Research

6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to

The Institute of Physics

7. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to

The University of Reading

8. The University of Reading is in the top 1% of universities worldwide (THE World University Rankings 2014). Its Department of Meteorology is internationally renowned for the study of atmospheric, oceanic and climate science. The University of Reading carries out pioneering research on weather, climate and earth observation and is also home to the Walker Institute for Climate System Research. Go to

Michael Bishop | Eurek Alert!

Further reports about: Earth Environmental IOP Meteorology Physics lightning physics

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>