Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Speed Camera Captures Dancing Droplets for Scientific ‘Photo Album,’ Study

08.08.2013
The splash from rain hitting a windowpane or printer ink hitting paper all comes down to tiny droplets hitting a surface, and what each of those droplets does.

Cornell University researchers have produced a high-resolution “photo album” of more than 30 shapes an oscillated drop of water can take. The results, a fundamental insight into how droplets behave, could have applications in everything from inkjet printing to microfluidics.



Susan Daniel, assistant professor of chemical and biomolecular engineering, led the study, to be published in Physical Review E, Aug. 9. First author Chun-Ti Chang, a Cornell graduate student, designed and performed the experiments, which involved a high-speed, high-resolution camera. Paul Steen, professor of chemical and biomolecular engineering, and his former student, Josh Bostwick, led the theoretical portion of the study.

Download the study, images and animations: https://cornell.box.com/droplets

“What is really special about this study is the high-quality imaging we were able to capture of these oscillating droplets,” Daniel said. “We created an imaging platform where we could look at the drop from the top, to enable us to see the characteristic shapes better than anyone has before.”

The imaging platform, which Chang has named the “Omniview” because of the different angles at which the droplet can be observed, consists of a glass slide, the droplet sitting on top, and a 50-micron-square metal mesh, like a window screen, underneath. A light is shined through the mesh holes, and deflection of the drop’s surface refracts the light, which is seen as a deformation of the mesh and captured by a high-speed camera.

The researchers mechanically oscillated the drops at varying frequencies, and observed and recorded their movements. The oscillation can be likened to when a violin string is plucked; certain natural frequencies correspond to a given length of string, the same way certain frequencies correspond to the shape of a drop of a specific size.

The researchers created a detailed table of droplet shapes according to frequency, as well as comparing these results to previous theoretical predictions involving the dynamics of oscillating droplets. Classical theories don’t capture the dynamics entirely, but new predictions, made by collaborators Steen and Bostwick, take into account the physical effect of the solid substrate in contact with the droplet and match the images in the photo album.

The researchers also observed that some of the droplets take on multiple shapes when vibrated with a single driving frequency – akin to physicists observing two different energy states simultaneously in an excited molecule.

“Without the high-speed imaging, we wouldn’t have been able to see the drops exhibiting these kinds of mixed behaviors,” Daniel said.

The detailed, clear table of oscillating drop modes should lend insight into further fundamental studies, as well as a host of applications, Daniel said. For example, NASA is interested in understanding how droplets on surfaces move in low gravity. And in high-resolution printing, the spread of a drop as it touches a surface will dictate image resolution. The surface chemistry of the roller, printer and ink will have profound effects on the technology.

The study, “Substrate Constraint Modifies the Rayleigh Spectrum of Vibrating Sessile Drops,” was supported NASA, the National Science Foundation and Xerox Corp.

Contact Syl Kacapyr for information about Cornell's TV and radio studios.

Syl Kacapyr | Newswise
Further information:
http://www.cornell.edu
http://cornell.box.com/droplets

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>