Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High in Sodium: Highly Charged Tungsten Ions May Diagnose Fusion Energy Reactors

10.09.2009
Just as health-food manufacturers work on developing the best possible sodium substitutes for low-salt diets, physicists at the National Institute of Standards and Technology (NIST) have acquired new knowledge on a promising sodium alternative of their own. Sodium-like tungsten ions could pepper—and conveniently monitor—the hot plasma soup inside fusion energy devices, potential sources of abundant, clean power.

Tungsten—having the highest melting point of any metal—will be used in some high-strength structural components in the experimental ITER fusion reactor under construction in France (see “NIST Light Source Illuminates Fusion Power Diagnostics,” NIST Tech Beat, Oct. 11, 2007.).

When ITER cooks up its hot, dense fusion plasma, it could erode trace amounts of tungsten from its structures and strip away many of its electrons in the process. When 63 of tungsten’s 74 electrons are removed, it becomes chemically analogous to sodium atoms, which have 11 electrons as well.

Ordinary sodium gas radiates bright yellow-orange light, which has proven useful for everything from mundane streetlamps to exotic atom lasers. Sodium radiates approximately 99 percent of its visible light in two shades of orange, which scientists have termed the “D” spectral lines.

Sodium-like tungsten ions emit intense light in analogous “D” spectral lines, but they are at far higher energy levels than sodium, and so are shifted out of the visible spectrum to the extreme ultraviolet. Measuring the wavelengths and relative intensities of lines in the spectrum of light released by a population of tungsten ions in the plasma can provide information about the fusion plasma conditions, such as its temperature, density and magnetic fields. Yet it has been challenging to measure light in this portion of the electromagnetic spectrum.

NIST’s John Gillaspy and his colleagues have now provided the first measurement* of both “D” lines in sodium-like tungsten, confirming theoretical predictions of their energies and intensities. The NIST scientists further checked their knowledge by measuring the spectrum of light from other sodium-like ions of hafnium, tantalum and gold. The researchers used NIST’s electron beam ion trap (EBIT), which employs an electron beam to make, catch and study highly charged ions. To measure the spectra, they used an extreme ultraviolet (EUV) spectrometer, originally developed to study 13.5 nanometer wavelength light emitted from plasma sources for next-generation microelectronics applications, but they discovered they could push it to detect radiation as low as about 2 nanometers, where tungsten’s lower-wavelength “D” line resides. With this experimental knowledge of tungsten’s lines, researchers may now have a robust new ingredient for measuring fusion reactor conditions.

* J.D. Gillaspy, I.N. Draganic, Y. Ralchenko, J. Reader, J.N. Tan, J.M. Pomeroy and S.M. Brewer Measurement of the D-line doublet in high-Z highly charged sodiumlike ions. Physical Review A, Published online 8 July 2009. doi/10.1103/PhysRevA.80.010501.

Ben Stein | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>