Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High in Sodium: Highly Charged Tungsten Ions May Diagnose Fusion Energy Reactors

10.09.2009
Just as health-food manufacturers work on developing the best possible sodium substitutes for low-salt diets, physicists at the National Institute of Standards and Technology (NIST) have acquired new knowledge on a promising sodium alternative of their own. Sodium-like tungsten ions could pepper—and conveniently monitor—the hot plasma soup inside fusion energy devices, potential sources of abundant, clean power.

Tungsten—having the highest melting point of any metal—will be used in some high-strength structural components in the experimental ITER fusion reactor under construction in France (see “NIST Light Source Illuminates Fusion Power Diagnostics,” NIST Tech Beat, Oct. 11, 2007.).

When ITER cooks up its hot, dense fusion plasma, it could erode trace amounts of tungsten from its structures and strip away many of its electrons in the process. When 63 of tungsten’s 74 electrons are removed, it becomes chemically analogous to sodium atoms, which have 11 electrons as well.

Ordinary sodium gas radiates bright yellow-orange light, which has proven useful for everything from mundane streetlamps to exotic atom lasers. Sodium radiates approximately 99 percent of its visible light in two shades of orange, which scientists have termed the “D” spectral lines.

Sodium-like tungsten ions emit intense light in analogous “D” spectral lines, but they are at far higher energy levels than sodium, and so are shifted out of the visible spectrum to the extreme ultraviolet. Measuring the wavelengths and relative intensities of lines in the spectrum of light released by a population of tungsten ions in the plasma can provide information about the fusion plasma conditions, such as its temperature, density and magnetic fields. Yet it has been challenging to measure light in this portion of the electromagnetic spectrum.

NIST’s John Gillaspy and his colleagues have now provided the first measurement* of both “D” lines in sodium-like tungsten, confirming theoretical predictions of their energies and intensities. The NIST scientists further checked their knowledge by measuring the spectrum of light from other sodium-like ions of hafnium, tantalum and gold. The researchers used NIST’s electron beam ion trap (EBIT), which employs an electron beam to make, catch and study highly charged ions. To measure the spectra, they used an extreme ultraviolet (EUV) spectrometer, originally developed to study 13.5 nanometer wavelength light emitted from plasma sources for next-generation microelectronics applications, but they discovered they could push it to detect radiation as low as about 2 nanometers, where tungsten’s lower-wavelength “D” line resides. With this experimental knowledge of tungsten’s lines, researchers may now have a robust new ingredient for measuring fusion reactor conditions.

* J.D. Gillaspy, I.N. Draganic, Y. Ralchenko, J. Reader, J.N. Tan, J.M. Pomeroy and S.M. Brewer Measurement of the D-line doublet in high-Z highly charged sodiumlike ions. Physical Review A, Published online 8 July 2009. doi/10.1103/PhysRevA.80.010501.

Ben Stein | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>