Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High plutonium breeding of light water cooled reactors

Professor Oka and his research team at Waseda University have succeeded in developing the world's first conceptual nuclear reactor design of high plutonium breeding by light water cooling.

Professor Oka's research team succeeded to develop the conceptual nuclear reactor design of high plutonium breeding by light water cooling for the first time in the world. He devised a new fuel assembly where fuel rods are closely packed for reducing reactor coolant to fuel volume fraction for high breeding.

With computational analysis he succeeded high plutonium breeding with light water cooling. The study will open the way of commercialization of fast reactor and nuclear fuel cycle for peaceful use of nuclear energy based on the mature light water cooling technologies. The result of the study was published in January issue of "Journal of Nuclear Science and Technology" of Atomic Energy Society of Japan (AESJ) , entitled "Plutonium breeding of light water cooled fast reactors".


Fast Breeder reactors (FBR) produce more fissile material than consuming, while producing electric power. It is a "dream of nuclear power". The main line of FBR development is the liquid metal cooled fast breeder reactor (LMFBR) . It is, however, not yet commercialized because of the complexity of the plant due to using liquid sodium as the coolant.

High plutonium breeding by light water cooling has been studied for many years, but not yet attained. Nuclear power plants and fossil fired power plant use water as the coolant. It is good to develop fast breeder reactor based on the experience of water coolant technologies.

Commercialization of nuclear fuel cycle and fast breeder reactors are important for reducing the amount of spent nuclear fuel of light water reactors (LWR) as well as the efficient utilization of uranium resources. Nuclear power utilization is in progress in many developing countries. Commercialization of spent nuclear fuel reprocessing in advanced countries enhances the nuclear security in the world.

High conversion light water reactors have been studied for many years since 1970 at research institutes and industry in Japan. The highest breeding characteristics were reported by the conceptual design study of the doubly axial heterogeneous core of a reduced moderation boiling water reactor (RMWR) . The compound system doubling time (CSDT) was, however, approximately 245 years. It is substantially longer than that of LMFBR.

New Concept

Breeding characteristics increases with decreasing the water to fuel volume ratio. Tight fuel lattice with narrow gap between fuel rods was adopted for RMWR. For further decreasing the water to fuel volume fraction, a new fuel assembly of closely packed fuel rods was devised. The new fuel assembly and its fuel lattice consisting of three fuel rods are depicted in Fig.1. The coolant flows through the central hole of fuel lattice. The integrity or the leak tightness of the fuel rod is maintained as the conventional fuel rod where both ends of the fuel cladding tube are welded by end plugs.

The reactor design was carried out by computational methods for the cores with new fuel assemblies. The highest breeding characteristics are obtained for the core layout of the fuel assemblies in Fig. 2. The comparison of the characteristics with the RMWR is given in Table 1. The compound system doubling time is 43 years. It is substantially shorter than that of RMWR, 245 years.

Goal of breeding characteristics

The energy demand increases with the gross domestic product (GDP) . The growth rate of GDP of seven advanced countries of OECD is 1.4% per year in 10 years. With this growth rate, the GDP becomes double in 50 years and the energy demand does. The breeding characteristic of Table1 is 43 years, shorter than 50 years. It means that the fast breeder reactors with the new fuel assembly meet the goal of energy demand growth of advanced countries.

Future Research and Development items

Reactor design of boiling water reactor (BWR) condition, safety design and evaluation, development of the new fuel assembly including testing, demonstration with a prototype reactor.
Social impacts

High breeding with water cooling technology will open the way of commercializing nuclear fuel cycle and fast breeder reactors. It made it possible to reduce the amount of spent LWR fuels, to enhance the deployment and the security of peaceful uses of nuclear power in developing countries.


Compound system doubling time (CSDT) : Time required for system of identical breeder reactors to double the fissile material in the system, assuming that the number of reactors is increasing at a rate such that all of the fissile material is being utilized.

Light water: Water of natural composition of H2O and D2O. It is a technical term of nuclear technology in order to distinguish heavy water consisting of pure D2O

Journal information
Yoshiaki Oka, Takashi Inoue and Taishi Yoshida, "Plutonium breeding of light water cooled fast reactors", J. Nuclear Science and Technology, vol.50 No.1, 15-20 (2013)

Funding information

Grant in Aid for Scientific Research (B) o. 22360398, JSPS/ MEXT.
"Research and Development of Super Fast Reactor" entrusted to Waseda University by MEXT/ JST

waseda university | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>