Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High plutonium breeding of light water cooled reactors

16.01.2013
Professor Oka and his research team at Waseda University have succeeded in developing the world's first conceptual nuclear reactor design of high plutonium breeding by light water cooling.

Professor Oka's research team succeeded to develop the conceptual nuclear reactor design of high plutonium breeding by light water cooling for the first time in the world. He devised a new fuel assembly where fuel rods are closely packed for reducing reactor coolant to fuel volume fraction for high breeding.

With computational analysis he succeeded high plutonium breeding with light water cooling. The study will open the way of commercialization of fast reactor and nuclear fuel cycle for peaceful use of nuclear energy based on the mature light water cooling technologies. The result of the study was published in January issue of "Journal of Nuclear Science and Technology" of Atomic Energy Society of Japan (AESJ) , entitled "Plutonium breeding of light water cooled fast reactors".

Introduction

Fast Breeder reactors (FBR) produce more fissile material than consuming, while producing electric power. It is a "dream of nuclear power". The main line of FBR development is the liquid metal cooled fast breeder reactor (LMFBR) . It is, however, not yet commercialized because of the complexity of the plant due to using liquid sodium as the coolant.

High plutonium breeding by light water cooling has been studied for many years, but not yet attained. Nuclear power plants and fossil fired power plant use water as the coolant. It is good to develop fast breeder reactor based on the experience of water coolant technologies.

Commercialization of nuclear fuel cycle and fast breeder reactors are important for reducing the amount of spent nuclear fuel of light water reactors (LWR) as well as the efficient utilization of uranium resources. Nuclear power utilization is in progress in many developing countries. Commercialization of spent nuclear fuel reprocessing in advanced countries enhances the nuclear security in the world.

High conversion light water reactors have been studied for many years since 1970 at research institutes and industry in Japan. The highest breeding characteristics were reported by the conceptual design study of the doubly axial heterogeneous core of a reduced moderation boiling water reactor (RMWR) . The compound system doubling time (CSDT) was, however, approximately 245 years. It is substantially longer than that of LMFBR.

New Concept

Breeding characteristics increases with decreasing the water to fuel volume ratio. Tight fuel lattice with narrow gap between fuel rods was adopted for RMWR. For further decreasing the water to fuel volume fraction, a new fuel assembly of closely packed fuel rods was devised. The new fuel assembly and its fuel lattice consisting of three fuel rods are depicted in Fig.1. The coolant flows through the central hole of fuel lattice. The integrity or the leak tightness of the fuel rod is maintained as the conventional fuel rod where both ends of the fuel cladding tube are welded by end plugs.

The reactor design was carried out by computational methods for the cores with new fuel assemblies. The highest breeding characteristics are obtained for the core layout of the fuel assemblies in Fig. 2. The comparison of the characteristics with the RMWR is given in Table 1. The compound system doubling time is 43 years. It is substantially shorter than that of RMWR, 245 years.

Goal of breeding characteristics

The energy demand increases with the gross domestic product (GDP) . The growth rate of GDP of seven advanced countries of OECD is 1.4% per year in 10 years. With this growth rate, the GDP becomes double in 50 years and the energy demand does. The breeding characteristic of Table1 is 43 years, shorter than 50 years. It means that the fast breeder reactors with the new fuel assembly meet the goal of energy demand growth of advanced countries.

Future Research and Development items

Reactor design of boiling water reactor (BWR) condition, safety design and evaluation, development of the new fuel assembly including testing, demonstration with a prototype reactor.
Social impacts

High breeding with water cooling technology will open the way of commercializing nuclear fuel cycle and fast breeder reactors. It made it possible to reduce the amount of spent LWR fuels, to enhance the deployment and the security of peaceful uses of nuclear power in developing countries.

NOTES

Compound system doubling time (CSDT) : Time required for system of identical breeder reactors to double the fissile material in the system, assuming that the number of reactors is increasing at a rate such that all of the fissile material is being utilized.

Light water: Water of natural composition of H2O and D2O. It is a technical term of nuclear technology in order to distinguish heavy water consisting of pure D2O

Journal information
Yoshiaki Oka, Takashi Inoue and Taishi Yoshida, "Plutonium breeding of light water cooled fast reactors", J. Nuclear Science and Technology, vol.50 No.1, 15-20 (2013)

Funding information

Grant in Aid for Scientific Research (B) o. 22360398, JSPS/ MEXT.
"Research and Development of Super Fast Reactor" entrusted to Waseda University by MEXT/ JST

waseda university | Research asia research news
Further information:
http://www.waseda.jp/eng/news12/130108_oka.html
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>