Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance microring resonator developed by INRS researchers

10.02.2010
New step toward ultra-fast optical communications

A new, more efficient low-cost microring resonator for high speed telecommunications systems has been developed and tested by Professor Roberto Morandotti's INRS team in collaboration with Canadian, American, and Australian researchers.

This technological advance capitalizes on the benefits of optical fibers to transmit large quantities of data at ultra-fast speeds. The results of the team's work, just published in the prestigious journal Nature Photonics, will facilitate the transition from electronic to optical communications, the future solution for meeting the growing needs of Internet and cellphone users.

The microring resonator investigated by Professor Morandotti's team at INRS's Energy, Materials, and Telecommunications Center in Varennes, Quebec, and by his colleagues, offers several advantages. Made from a special glass with exceptional optical properties, this key signal transmission component can be incorporated into the microchips used extensively in telecommunications systems. Furthermore, it is fabricated using the same methods as those employed by silicon chip manufacturers, thereby reducing optical component costs and making the technology more affordable.

The new resonator has the additional advantage of using a single low-power laser source to obtain multiple wavelengths, unlike existing devices that require very high optical power, or different devices. Furthermore, Professor Morandotti and his team have been successful in generating a new multiple-wavelength laser source at a threshold optical power level as low as ~54mW, setting a new world record for glass devices in the process.

This technological breakthrough is crucial because it comes as electronic devices are reaching their data transmission capacity limit, whereas optical fibers offer much greater capacity and better transmission quality. In addition to revolutionizing the world of telecommunications, INRS researchers are helping create new applications in the fields of detection and metrology, including measurement applications in physics and computers, as well as instrument calibration and adjustment.

The articles published in Nature Photonics are available at:
http://www.nature.com/nphoton/journal/v4/n1/abs/nphoton.2009.236.html
http://www.nature.com/nphoton/journal/v2/n12/abs/nphoton.2008.228.html
References: "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures", M. Ferrera, L. Razzari, D. Duchesne, and R. Morandotti, INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec, Canada, J3X 1S2; Zhenshan Yang, M. Liscidini, and J. Sipe, Dept. of Physics, University of Toronto, Canada; B. Little and S. Chu, Infinera Ltd., California, USA; David J. Moss, CUDOS, School of Physics, University of Sydney, Australia.

"CMOS-compatible integrated optical hyper-parametric oscillator", L. Razzari, D. Duchesne, M. Ferrera, and R. Morandotti, INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec, Canada, J3X 1S2; B. Little and S. Chu, Infinera Ltd., California, USA; David J. Moss, CUDOS, School of Physics, University of Sydney, Australia.

INRS is a university dedicated to research and graduate studies. One of Canada's leading research universities in terms of research intensity, INRS brings together 160 research professors at centers in Montreal, Quebec City, Laval, and Varennes. Conducting fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems facing our society.

Gisèle Bolduc | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>