Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-energy astrophysics puzzle

24.04.2013
Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of a blazar known as PKS 1424+240 show that it is the most-distant known source of very high-energy gamma rays. But its emission spectrum appears highly unusual.

A team including Carnegie's Michele Fumagalli used data from the Hubble Space Telescope to set a lower limit for the blazar's redshift (z ¡Ý 0.6035). An object's redshift value is a measurement of how much the wavelength of the light from it that reaches Earth is stretched by the expansion of the Universe.

Thus, it reveals the object's age and distance. This blazar's redshift corresponds to a distance of at least 7.4 billion light-years. Their work will be published by The Astrophysical Journal and is available online.

Over such a great distance, a substantial proportion of the gamma rays should be absorbed by the extragalactic background light, but calculations that account for the expected absorption yield an unexpected emission spectrum for the blazar.

"We're seeing an extraordinarily bright source that does not display the characteristic emission expected from a very high-energy blazar," said lead author Amy Furniss, University of California Santa Cruz.

The findings may indicate something new about the emission mechanisms of blazars, the extragalactic background light, or the propagation of gamma-ray photons over long distances. It was not thought that such high-energy gamma-ray sources could be seen at such great distances. The research should allow scientists to better understand cosmological models that predict the extragalactic background light.

The extragalactic background light (EBL) is the diffuse radiation from all stars and galaxies, a dim but pervasive glow that fills the universe. When a high-energy gamma-ray photon collides with a lower-energy EBL photon, they annihilate and create an electron-positron pair. The farther gamma rays have to travel, the more likely they are to be absorbed by this mechanism. This limits the distance to which sources of very high-energy gamma rays can be detected.

Measuring the EBL directly is extremely difficult because there are so many bright sources of light in our immediate neighborhood. In addition to estimates based on cosmological models, astronomers have used galaxy counts to set a lower limit for the EBL. Using a model close to this lower limit to calculate the expected absorption of very high-energy gamma rays from PKS 1424+240, the team derived an intrinsic gamma-ray emission spectrum for the blazar. The results, however, deviate from the expected emission based on current blazar models, which are thought to result from a relativistic jet of particles powered by matter falling onto a supermassive black hole at the center of the host galaxy.

Gamma rays from PKS 1424+240 were first detected by the Fermi Gamma-ray Space Telescope and subsequently by the ground-based instrument VERITAS (Very Energetic Radiation Imaging Telescope Array System), which is sensitive to gamma-rays in the very high-energy (VHE) band from about 100 GeV to more than 10 TeV. To determine the redshift of the blazar--a measure of how much the light from an object has been stretched to longer wavelengths by the expansion of the universe--the researchers used archival data obtained by the Hubble Space Telescope.

The other co-authors on the paper are David Williams, J. Xavier Prochaska, Joel Primack, also of UCSC; Charles Danforth and John Stocke of the University of Colorado; Meg Urry of Yale University; Alex Filippenko of UC Berkeley; and William Neely of the NF/ Observatory.

Support was provided by NASA awarded through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA; the National Science Foundation award PHY-0970134; NASA grants NNX08AC146 and NAS5-98043 to the University of Colorado at Boulder ; NASA/Fermi grants GO-31089 and NNX12AF12GA; NSF grant AST-1211916; the Christopher R. Redlich Fund; the TABASGO Foundation; and NASA Hubble Fellowship grant HF-51305.01-A.

KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation and the TABASGO Foundation.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Michele Fumagalli | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>