Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-angle helix helps bacteria swim

14.08.2013
It’s counterintuitive but true: Some microorganisms that use flagella for locomotion are able to swim faster in gel-like fluids such as mucus.

Research engineers at Brown University have figured out why. It's the angle of the coil that matters. Findings are reported in Physical Review Letters.


A really interesting fluid dynamics problem
Locomotion is a different proposition at the cellular scale. A bacterium — this is a helical leptospira — that is swimming through water “would be like us trying to swim in tar.” Some microorganisms swim with helical flagella, but how?


Powerful swimmers: a comparison
In the graph, the vertical axis is the ratio of speed in a viscoelastic fluid to speed in water. The horizontal axis is the degree of viscoelasticity. A flagellum with a high-angle helix, labeled with triangle, swims faster in a viscoelastic fluid than in water when the viscoelasticity is just right. As the helix angle decreases, the peak enhancement in speed decreases. For low-angle helices (circle), viscoelasticity always makes the swimmer slower than it would be in water. Credit: Powers lab/Brown University

A high-angle helix helps microorganisms like sperm and bacteria swim through mucus and other viscoelastic fluids, according to a new study by researchers from Brown University and the University of Wisconsin. The findings help clear up some seemingly conflicting findings about how microorganisms swim using flagella, helical appendages that provide propulsion as they rotate.

Simple as single-celled creatures may be, understanding how they get around requires some complex science. The physics of helical swimming turns out to be “a really interesting fluid dynamics problem,” said Thomas Powers, a professor of engineering and physics at Brown and one of the new study’s authors.

At the scale of a single cell, fluids become much more viscous than on larger scales. A bacterium swimming through water “would be like us trying to swim in tar,” Powers said. That means swimming at the micron scale is a completely different enterprise than it is for fish or people. Counterintuitive as it may sound, tiny helical swimmers rely exclusively on drag to move forward. The turning flagellum creates an apparent wave that propagates out from behind the creature. The drag force against that wave pushes the creature in the opposite direction.

Powerful swimmers: a comparisonIn the graph, the vertical axis is the ratio of speed in a viscoelastic fluid to speed in water. The horizontal axis is the degree of viscoelasticity. A flagellum with a high-angle helix, labeled with triangle, swims faster in a viscoelastic fluid than in water when the viscoelasticity is just right. As the helix angle decreases, the peak enhancement in speed decreases. For low-angle helices (circle), viscoelasticity always makes the swimmer slower than it would be in water.

In recent years, there has been some theoretical work aimed at fully understanding the physics of this kind of swimming, much of it done by modeling how helical swimmers behave in water. But bacteria and sperm spend a lot of time in fluids like mucus and cervical fluid — fluids that are not only more viscous than water, but also elastic since they are full of springy polymers. Because a rotating helix might be able to push against the polymers, it could be that a viscoelastic fluid makes swimming easier.

“It’s a fairly simple question,” Powers said. “Does viscoelasticity make microorganisms swim faster or slower?” Finding the right answer, however, hasn’t been so simple.

Early theoretical work suggested viscoelastic fluids should slow helical swimmers down. But some experimental work in the Brown School of Engineering by Powers, postdoctoral associate Bin Liu, and Kenneth Breuer, professor of engineering, suggested that viscoelastic fluids should actually help helical swimmers move faster.

This latest study, published in the journal Physical Review Letters, helps to bridge that apparent gap. Powers and Liu worked with Saverio Spagnolie, aprofessor of mathematics at the University of Wisconsin and aformer postdoctoral researcher at Brown. Using what Powers described as “some clever numerical methods and a lot of hard work,” Spagnolie was able to show computationally that the pitch angle of the helix — the degree to which the helix is coiled — matters in how well it performs in viscoelastic fluids. At a low pitch angle (think of a stretched phone cord), helices move more slowly in viscoelastic fluids. When the pitch angle increases, performance improves.

The findings reconcile the experimental and earlier theoretical work. Much of the theoretical work, which suggested more viscosity would cause slower swimming, assumed a small pitch angle for the sake of keeping the computations manageable. The experimental work, which showed viscosity sped swimming, involved higher pitch angles. By showing numerically that a higher pitch angle increases speed, the researchers were able to explain that apparent discrepancy. “This work shows how you can connect that prior work,” Powers said.

While this work was extremely valuable in linking theory and experiment, there’s still much more work to be done on this problem, Powers says. “We don’t really understand the result because it is so hard to visualize the three-dimensional configuration of all the forces involved. It’s actually very frustrating. We’re still trying to get an intuitive picture.”

That, at this point, is still an upstream swim.

Ultimately, the researchers say, a better understanding how tiny swimmers get around could inform studies of bacterial infection and fertility. It could also help scientists develop artificial swimmers that could deliver medicine inside the body.

The work was supported by the National Science Foundation (CBET-0854108).

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>