Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higgs excitations near absolute zero

26.07.2012
A collaboration of physicists from MPQ, LMU, Harvard and Caltech detect Higgs-type excitations in a low-dimensional system of ultracold atoms at the transition between different phases of matter.

The sudden breaking of symmetry plays a fundamental role in physics, in particular for the description of phase transitions that change the whole state of a system. One example is the spontaneous alignment of the atomic magnets in a ferromagnetic material that is cooled down below the Curie-temperature. Being governed by such a “global order”, the system can be excited to a collective oscillation, in which all particles move in a coordinated way.


Figure: Illustration of the Higgs excitation in a two-dimensional system. The dynamics of the Higgs excitation (red sphere) is described by an oscillation in a ‘sombrero’-shaped potential.
Graphic: MPQ, Quantum Many-Body Division

If the collective behaviour follows the rules of relativity, a special kind of oscillation can develop, a so-call Higgs excitation (named after the British physicist Peter Higgs). Such an excitation plays a key role in the standard model of elementary particles, where it is called a Higgs-particle. Also, solid state-like systems can exhibit Higgs excitations, if the collective motion of the particles obeys rules that resemble those of the theory of relativity.

However, the detection of Higgs excitations is usually rather difficult, because the excitations typically decay in a short time. Moreover, they are expected to be especially short-lived in very flat, so-called low-dimensional systems and it has been a subject of theoretical debate whether they are observable at all in such geometries. Now, a team of physicists from the Quantum Many-Body Division of the Max-Planck-Institute of Quantum Optics (Garching near Munich) together with theory colleagues from Harvard University (Cambridge, USA) and the California Institute of Technology (Pasadena, USA) succeeded in experimentally identifying Higgs excitations in a two-dimensional system of ultracold atoms (Nature, 26 July, 2012). “We are excited to study phenomena close to absolute zero temperature that usually occur at the highest energies”, Prof. Immanuel Bloch, leader of the Division, explains.

The experiment starts with cooling rubidium atoms down to temperatures near absolute zero. Then the ultracold atoms are loaded into a two-dimensional optical lattice, a checkerboard-like pattern of dark and bright regions of light that is produced by interfering laser beams. Ultracold atoms in such lattices offer the opportunity to realize different states of matter.

For very intense optical lattices (which means a very high contrast between dark and bright areas), a highly ordered state develops, a so-called Mott insulator (named after the British physicist Sir Neville Mott). In this state, each lattice site is occupied with exactly one single atom, which is fixed to its place. If the lattice intensity is decreased more and more, a phase transition to a superfluid takes place. In a superfluid, all atoms are part of a single field, which extends over the whole lattice and describes the collective motion of the system as one extended quantum mechanical wave. The dynamics of this quantum field follows the laws of an “effective” relativistic field theory, in which the speed of light is replaced by the speed of sound. When the system is brought out of equilibrium, collective oscillations in the form of Higgs excitations can be generated.

A fundamental challenge for the researchers has been to find out whether Higgs excitations can survive even in a two-dimensional system, and if so, how they can be detected. To answer these questions, the scientists set the system parameters such that the quantum gas is very close to the described transition from a superfluid to a Mott insulator. Then, for several milliseconds, the lattice intensity is gently modulated. This modulation is expected to create a few Higgs excitations, while minimally disturbing the system. “We shake the system only very gently to avoid undesired side effects. Otherwise, we could not isolate the signal of the Higgs excitations”, Manuel Endres, one of the senior researchers on the project, points out. “We are able to measure the temperature of the system with a precision of a billionth of a Kelvin using an extremely sensitive method developed in our group. With this method, we could detect small peaks in the temperature distribution at certain values of modulation frequencies.”

The researchers interpret their observations in the following way: Once the frequency of the intensity modulation matches the oscillation frequency of a Higgs excitation, the generation of Higgs excitations is resonantly enhanced. In this situation, more energy is transferred to the system which leads to a rise in its temperature. The experimental data show a clear shift to lower oscillation frequencies when the transition to a Mott insulator is approached. “We talk about a ‘softening’ of the Higgs excitation, which is characteristic of their collective behaviour in the vicinity of the quantum phase transition,” Manuel Endres points out.
It has been a subject of theoretical debate whether Higgs excitations exist at all in such a system, and if so, what their precise properties are. “We have detected a phenomenon which, at present, cannot be precisely calculated. This makes the experimental observation even more important”, Manuel Endres says. [Olivia Meyer-Streng]

Original publication:

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schauss, Christian Gross, Eugene Demler, Stefan Kuhr, and Immanuel Bloch
The ‘Higgs’ Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition
Nature, 26 July, 2012

Contact:

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 (0) 89 / 32905 -138
E-mail: immanuel.bloch@mpq.mpg.de

Manuel Endres
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 (0) 89 / 32905 -214
E-mail: manuel.endres@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Phone: +44 141 548 3364
E-mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>