Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heusler Materials: Goldmine for Future Technologies

20.07.2010
New quantum state of matter discovered in Heusler compounds - Researchers from Mainz and Stanford pave the way for spintronics, quantum computing and completely new physical effects

For many years, scientists at the Johannes Gutenberg University Mainz (JGU) in Germany have been world leaders in research on Heusler compounds, which are an important material class for the use in spintronic applications. Over the past few years, new application areas have emerged in the field of renewable energy, such as solar energy and thermoelectrics. And now Heusler compounds are also being considered for future technologies such as the quantum computer.

"Calculations have uncovered a new quantum state of matter in Heusler compounds, which opens up previously unimagined usage possibilities", explains Professor Claudia Felser from Mainz University. "Heusler materials are real all-rounders and a veritable goldmine for future technologies." Together with Professor Shou Cheng Zhang of Stanford University, the scientist from Mainz has shown that many Heusler compounds can behave like topological insulators (TI). TIs were discovered just five years ago.

Key discoveries in the field of physics or material sciences are often made by chance during experiments in laboratories. However, this was not the case with topological insulators. In 2006, Professor Zhang of Stanford predicted that a new quantum state of matter would be identified in nanostructures of the familiar semiconductor mercury cadmium telluride (HgTe). One year later, this was confirmed in experiments carried out by the Würzburg team led by Professor Laurens Molenkamp. Completely new mathematical concepts are required to understand the physical aspects of what has been discovered.

For almost five years now, TIs have been a hot topic in the field of solid state and material physics. Characteristic of topological insulators is the fact that the materials are actually insulators or semiconductors, although their surfaces or interfaces are made from metal - but not ordinary metal. Like superconductors, the electrons on the surfaces or interfaces do not interact with their environment - they are in a new quantum state. In contrast with superconductors, topological insulators have two non-interacting currents, one for each spin direction. These two spin currents, which are not affected by defects or impurities in the material, can be employed in the futuristic electronics field of 'spintronics' and for processing information in quantum computers.

It is now supposed that Heusler materials may have the same capabilities. Heusler compounds are made up of three elements, which often have semiconductor or magnetic properties. This compound class was discovered by Fritz Heusler back around 1900. One special feature of these compounds is that they exhibit characteristics other than those that might be expected in view of the elements of which they are composed. The first Heusler compound, for example, was made from the non-magnetic elements copper, manganese, and aluminium. Yet, Cu2MnAl acts as a ferromagnet, even at room temperature. On the other hand, a semiconductor can result when three metals are combined. New semiconductors can be designed in the class of Heusler materials with regard to the field of renewable energies; they can be used in solar cells or in thermoelectric applications, for converting heat into electricity. Mainz is internationally renowned as a major location for the design and synthesis of Heusler materials. Important discoveries with regard to Heusler compounds, their properties, and their uses in a wide range of potential applications have been made in Mainz.

The news that Heusler materials are now being considered as possible topological insulators has met with excitement all over the world. "There are two reasons for this," explains Professor Felser. "On the one hand, this large material class with over 1,000 known representatives contains more than 50 compounds that bear the hallmark of TIs. And on the other hand, it is now possible to design completely new physical effects. As the materials are made up of three elements, they can offer a range of other interesting features in addition to the topological quantum state." It is now possible to combine two quantum states such as superconductivity and topological surface effects. This paves the way for completely new and as yet undiscovered characteristics, some of which have already been predicted. "It was previously not considered possible to combine all these possibilities in just one material," explains Professor Felser.

The leading scientific journal Nature Materials published three articles on this topic in light of these disclosures - the article from the research team in Stanford and Mainz, a contribution submitted by Princeton a short time later, and a discussion of the sensational discovery.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13720.php
http://www.nature.com/nmat/journal/v9/n7/full/nmat2770.html
http://www.nature.com/nmat/journal/v9/n7/full/nmat2783.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>