Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herschel: The first science highlights

16.07.2010
Astronomy & Astrophysics is publishing a special feature devoted to the first science results obtained with Herschel, an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

Herschel was launched on 14 May 2009, and progress since launch with various webreleases can be followed on the Herschel Science Centre Latest News webpage at http://herschel.esac.esa.int/latest_news.shtml.

Herschel has a 3.5m diameter, passively cooled Cassegrain telescope and a complement of three science instruments, whose focal plane units are cryogenically cooled inside a superfluid helium cryostat. The PACS and SPIRE instruments provide broadband imaging photometry in six bands centred on 75, 100, 160, 250, 350, and 500 µm and imaging spectroscopy over the range 55-672 µm. The HIFI instrument provides very high-resolution heterodyne spectroscopy over the ranges 157-212 and 240-625 µm.

Beginning in October 2009 Herschel gradually - as more and more observing modes were validated and released for use - started to perform observations from the various approved science programmes using the PACS and SPIRE instruments. Owing to an anomaly, the HIFI instrument was unavailable from August 2009 to January 2010, and science using HIFI only started in earnest in February 2010.

This volume of Astronomy & Astrophysics contains 152 papers that were submitted by end of March 2010 highlighting Herschel's first science results. A few papers describe the observatory and its instruments, and the rest are dedicated to observations of many astronomical targets from bodies in the Solar System to distant galaxies.

The prime science objectives of Herschel are intimately connected to the physics of and processes in the interstellar medium (ISM) in the widest sense: near and far in both space and time, stretching from Solar System objects and the relics of the formation of the Sun and our Solar System, through star formation in and feedback by evolved stars to the ISM, to the star formation history of the Universe, galaxy evolution, and cosmology. The very first observational results from Herschel already show that it will have strong impact on research in these fields as exemplified by the following three observational results.

The 'Great Observatory Origins Deep Survey' (GOODS), is a field that has been observed by many telescopes in a range of wavelengths, seen now by Herschel/SPIRE in submillimetre wavelengths (Fig. 1). This area of sky is devoid of foreground objects, such as stars within our Galaxy or any other nearby galaxies, which makes it ideal for observing deeper into space. Each fuzzy blob is a very distant galaxy seen as they were three to ten billion years ago when star formation was very more widespread throughout the Universe. The image is made from the three SPIRE bands, with blue, green, and red, corresponding to 250, 350, and 500 ìm, respectively.

Herschel has imaged (Fig. 2) a stellar nursery around 1000 light-years away in the constellation Aquila (the Eagle). This cloud, 65 light-years across, is so shrouded by dust that no infrared satellite has been able to see into it, until now. Thanks to Herschel's greater sensitivity at the longest infrared wavelengths, astronomers have their first picture inside this cloud. Using Herschel's PACS and SPIRE instruments at the same time, the image shows two bright regions where large newborn stars are causing hydrogen gas to shine. Embedded in the dusty filaments are 700 condensations of dust and gas that will eventually become stars. Astronomers estimate that about 100 are 'protostars', that is, celestial objects in the final stages of formation. Each one just needs to ignite nuclear fusion in its core to become a true star. The other 600 objects are not developed enough to be called protostars, but eventually they will become another generation of stars. Observing these stellar nurseries is a key programme for Herschel, which aims to uncover the demographics of star formation and its origins, or in other words, the quantities of stars that can form and the range of masses for these newborn stars.

A part of a Herschel/HIFI spectral scan is shown in Fig. 3. The observation is towards the Orion Nebula, a relatively nearby star-forming region, the 'sword' in the constellation of Orion. A characteristic feature is the spectral richness: among the organic molecules identified in this spectrum are water, carbon monoxide, formaldehyde, methanol, dimethyl ether, hydrogen cyanide, sulphur oxide, sulphur dioxide, and their isotope analogues. It is expected that new molecules will also be identified. This spectrum is the first glimpse of the spectral richness of regions of star and planet formation. It harbours the promise of a deep understanding of the chemistry of space once the complete spectral surveys are available.

These three examples are but the tip of the iceberg of what has been achieved in only a few months of science observing. The current best estimate of the total mission lifetime - from the launch onward - is in the range 3.5-4 years. Although the initial science results from Herschel are just appearing and are very exciting, they represent only a very small fraction of what is still to come.

Jennifer Martin | EurekAlert!
Further information:
http://www.obspm.fr
http://herschel.esac.esa.int/latest_news.shtml

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

German Federal Government Promotes Health Care Research

29.03.2017 | Awards Funding

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>