Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping superconductors turn up the heat

19.06.2012
A team of physicists from the University of Miami introduces a breakthrough in the understanding of high-temperature superconductivity

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world.

Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature constraints.

"Understanding how superconductivity works at higher temperatures will make it easier to know how to look for such superconductors, how to engineer them, and then how to integrate them into new technologies," says Josef Ashkenazi, associate professor of physics at the UM College of Arts and Sciences and first author of the study. "It's always been like this when it comes to science: once you understand it, the technological applications follow."

At room temperature, superconducting materials behave like typical metals, but when the temperature is lowered toward absolute zero (at around -273oC, or -460oF), resistance to electric current suddenly drops to zero, making it ultra-efficient in terms of energy use. Although absolute zero is unachievable, substances such as liquid helium and liquid nitrogen can be used to cool materials to temperatures approaching it.

Researchers are also working on creating materials that yield superconductivity in a less frigid environment. The point at which a matter becomes a superconductor is called critical or transition temperature. So far, the highest critical temperature of a superconducting material is about -130oC (-200oF).

"But just 'cooking' new materials that produce superconductivity at higher temperatures can be very tedious and expensive, when one doesn't know exactly how the process works," says Neil Johnson, professor of physics in the UM College of Arts and Sciences and co-author of the study.

To understand the problem, the UM team studied what happens in a metal at the exact moment when it stops being a superconductor. "At that point, there are great fluctuations in the sea of electrons, and the material jumps back and forth between being a superconductor and not being one," Johnson says.

The key to understanding what happens at that critical point lies in the unique world of quantum particles. In this diminutive universe, matter behaves in ways that are impossible to replicate in the macroscopic world. It is governed not by the laws of classical physics, but by the laws of quantum mechanics.

One of the most perplexing features of quantum mechanics is that a system can be described by the combination or 'superposition' of many possible states, with each possible state being present in the system at the same time. Raising the critical temperature of superconductors is prevented in common cases, because it creates a fragmentation of the system into separate states; this act suppresses high-temperature superconductivity.

What Ashkenazi and Johnson found is that just above the critical temperature specific quantum effects can come to the floor and generate superpositions of individual states. This superposition of states provides an effective "glue," which helps repair the system, allowing superconducting behavior to emerge once again. This model provides a mechanism for high temperature superconductivity.

"Finding a path to high-temperature superconductivity is currently one of the most challenging problems in physics," says Ashkenazi. "We present for the first time, a unified approach to this problem by combining what has prevented scientists from achieving high-temperature superconductivity in the past, with what we now know is permitted under the quantum laws of nature."

"The new model combines elements at two levels: physically pulling together the fragments of the system at the quantum level, and theoretically threading together components of many other existing theories about superconductivity," Johnson says.

Understanding how superconductivity is pushed beyond the present critical temperatures will help researchers recreate the phenomenon at a wider temperature range, in different materials, and could spur the development of smaller, more powerful and energy efficient technologies that would benefit society.

The study, titled "Pairing Glue Activation in Curates within the Quantum Critical Regime," is published online ahead of print by the journal Europhysics Letters.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!
Further information:
http://www.miami.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>