Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping superconductors turn up the heat

19.06.2012
A team of physicists from the University of Miami introduces a breakthrough in the understanding of high-temperature superconductivity

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world.

Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature constraints.

"Understanding how superconductivity works at higher temperatures will make it easier to know how to look for such superconductors, how to engineer them, and then how to integrate them into new technologies," says Josef Ashkenazi, associate professor of physics at the UM College of Arts and Sciences and first author of the study. "It's always been like this when it comes to science: once you understand it, the technological applications follow."

At room temperature, superconducting materials behave like typical metals, but when the temperature is lowered toward absolute zero (at around -273oC, or -460oF), resistance to electric current suddenly drops to zero, making it ultra-efficient in terms of energy use. Although absolute zero is unachievable, substances such as liquid helium and liquid nitrogen can be used to cool materials to temperatures approaching it.

Researchers are also working on creating materials that yield superconductivity in a less frigid environment. The point at which a matter becomes a superconductor is called critical or transition temperature. So far, the highest critical temperature of a superconducting material is about -130oC (-200oF).

"But just 'cooking' new materials that produce superconductivity at higher temperatures can be very tedious and expensive, when one doesn't know exactly how the process works," says Neil Johnson, professor of physics in the UM College of Arts and Sciences and co-author of the study.

To understand the problem, the UM team studied what happens in a metal at the exact moment when it stops being a superconductor. "At that point, there are great fluctuations in the sea of electrons, and the material jumps back and forth between being a superconductor and not being one," Johnson says.

The key to understanding what happens at that critical point lies in the unique world of quantum particles. In this diminutive universe, matter behaves in ways that are impossible to replicate in the macroscopic world. It is governed not by the laws of classical physics, but by the laws of quantum mechanics.

One of the most perplexing features of quantum mechanics is that a system can be described by the combination or 'superposition' of many possible states, with each possible state being present in the system at the same time. Raising the critical temperature of superconductors is prevented in common cases, because it creates a fragmentation of the system into separate states; this act suppresses high-temperature superconductivity.

What Ashkenazi and Johnson found is that just above the critical temperature specific quantum effects can come to the floor and generate superpositions of individual states. This superposition of states provides an effective "glue," which helps repair the system, allowing superconducting behavior to emerge once again. This model provides a mechanism for high temperature superconductivity.

"Finding a path to high-temperature superconductivity is currently one of the most challenging problems in physics," says Ashkenazi. "We present for the first time, a unified approach to this problem by combining what has prevented scientists from achieving high-temperature superconductivity in the past, with what we now know is permitted under the quantum laws of nature."

"The new model combines elements at two levels: physically pulling together the fragments of the system at the quantum level, and theoretically threading together components of many other existing theories about superconductivity," Johnson says.

Understanding how superconductivity is pushed beyond the present critical temperatures will help researchers recreate the phenomenon at a wider temperature range, in different materials, and could spur the development of smaller, more powerful and energy efficient technologies that would benefit society.

The study, titled "Pairing Glue Activation in Curates within the Quantum Critical Regime," is published online ahead of print by the journal Europhysics Letters.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!
Further information:
http://www.miami.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>