Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping superconductors turn up the heat

19.06.2012
A team of physicists from the University of Miami introduces a breakthrough in the understanding of high-temperature superconductivity

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world.

Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature constraints.

"Understanding how superconductivity works at higher temperatures will make it easier to know how to look for such superconductors, how to engineer them, and then how to integrate them into new technologies," says Josef Ashkenazi, associate professor of physics at the UM College of Arts and Sciences and first author of the study. "It's always been like this when it comes to science: once you understand it, the technological applications follow."

At room temperature, superconducting materials behave like typical metals, but when the temperature is lowered toward absolute zero (at around -273oC, or -460oF), resistance to electric current suddenly drops to zero, making it ultra-efficient in terms of energy use. Although absolute zero is unachievable, substances such as liquid helium and liquid nitrogen can be used to cool materials to temperatures approaching it.

Researchers are also working on creating materials that yield superconductivity in a less frigid environment. The point at which a matter becomes a superconductor is called critical or transition temperature. So far, the highest critical temperature of a superconducting material is about -130oC (-200oF).

"But just 'cooking' new materials that produce superconductivity at higher temperatures can be very tedious and expensive, when one doesn't know exactly how the process works," says Neil Johnson, professor of physics in the UM College of Arts and Sciences and co-author of the study.

To understand the problem, the UM team studied what happens in a metal at the exact moment when it stops being a superconductor. "At that point, there are great fluctuations in the sea of electrons, and the material jumps back and forth between being a superconductor and not being one," Johnson says.

The key to understanding what happens at that critical point lies in the unique world of quantum particles. In this diminutive universe, matter behaves in ways that are impossible to replicate in the macroscopic world. It is governed not by the laws of classical physics, but by the laws of quantum mechanics.

One of the most perplexing features of quantum mechanics is that a system can be described by the combination or 'superposition' of many possible states, with each possible state being present in the system at the same time. Raising the critical temperature of superconductors is prevented in common cases, because it creates a fragmentation of the system into separate states; this act suppresses high-temperature superconductivity.

What Ashkenazi and Johnson found is that just above the critical temperature specific quantum effects can come to the floor and generate superpositions of individual states. This superposition of states provides an effective "glue," which helps repair the system, allowing superconducting behavior to emerge once again. This model provides a mechanism for high temperature superconductivity.

"Finding a path to high-temperature superconductivity is currently one of the most challenging problems in physics," says Ashkenazi. "We present for the first time, a unified approach to this problem by combining what has prevented scientists from achieving high-temperature superconductivity in the past, with what we now know is permitted under the quantum laws of nature."

"The new model combines elements at two levels: physically pulling together the fragments of the system at the quantum level, and theoretically threading together components of many other existing theories about superconductivity," Johnson says.

Understanding how superconductivity is pushed beyond the present critical temperatures will help researchers recreate the phenomenon at a wider temperature range, in different materials, and could spur the development of smaller, more powerful and energy efficient technologies that would benefit society.

The study, titled "Pairing Glue Activation in Curates within the Quantum Critical Regime," is published online ahead of print by the journal Europhysics Letters.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!
Further information:
http://www.miami.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>