Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping superconductors turn up the heat

19.06.2012
A team of physicists from the University of Miami introduces a breakthrough in the understanding of high-temperature superconductivity

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world.

Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature constraints.

"Understanding how superconductivity works at higher temperatures will make it easier to know how to look for such superconductors, how to engineer them, and then how to integrate them into new technologies," says Josef Ashkenazi, associate professor of physics at the UM College of Arts and Sciences and first author of the study. "It's always been like this when it comes to science: once you understand it, the technological applications follow."

At room temperature, superconducting materials behave like typical metals, but when the temperature is lowered toward absolute zero (at around -273oC, or -460oF), resistance to electric current suddenly drops to zero, making it ultra-efficient in terms of energy use. Although absolute zero is unachievable, substances such as liquid helium and liquid nitrogen can be used to cool materials to temperatures approaching it.

Researchers are also working on creating materials that yield superconductivity in a less frigid environment. The point at which a matter becomes a superconductor is called critical or transition temperature. So far, the highest critical temperature of a superconducting material is about -130oC (-200oF).

"But just 'cooking' new materials that produce superconductivity at higher temperatures can be very tedious and expensive, when one doesn't know exactly how the process works," says Neil Johnson, professor of physics in the UM College of Arts and Sciences and co-author of the study.

To understand the problem, the UM team studied what happens in a metal at the exact moment when it stops being a superconductor. "At that point, there are great fluctuations in the sea of electrons, and the material jumps back and forth between being a superconductor and not being one," Johnson says.

The key to understanding what happens at that critical point lies in the unique world of quantum particles. In this diminutive universe, matter behaves in ways that are impossible to replicate in the macroscopic world. It is governed not by the laws of classical physics, but by the laws of quantum mechanics.

One of the most perplexing features of quantum mechanics is that a system can be described by the combination or 'superposition' of many possible states, with each possible state being present in the system at the same time. Raising the critical temperature of superconductors is prevented in common cases, because it creates a fragmentation of the system into separate states; this act suppresses high-temperature superconductivity.

What Ashkenazi and Johnson found is that just above the critical temperature specific quantum effects can come to the floor and generate superpositions of individual states. This superposition of states provides an effective "glue," which helps repair the system, allowing superconducting behavior to emerge once again. This model provides a mechanism for high temperature superconductivity.

"Finding a path to high-temperature superconductivity is currently one of the most challenging problems in physics," says Ashkenazi. "We present for the first time, a unified approach to this problem by combining what has prevented scientists from achieving high-temperature superconductivity in the past, with what we now know is permitted under the quantum laws of nature."

"The new model combines elements at two levels: physically pulling together the fragments of the system at the quantum level, and theoretically threading together components of many other existing theories about superconductivity," Johnson says.

Understanding how superconductivity is pushed beyond the present critical temperatures will help researchers recreate the phenomenon at a wider temperature range, in different materials, and could spur the development of smaller, more powerful and energy efficient technologies that would benefit society.

The study, titled "Pairing Glue Activation in Curates within the Quantum Critical Regime," is published online ahead of print by the journal Europhysics Letters.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!
Further information:
http://www.miami.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>