Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Help in the Search for the Needle in the Haystack

15.10.2014

Heidelberg physicists render usable method for detecting extremely rare inert gas isotopes for water dating

In the earth and environmental sciences, radioactive isotopes, atom variants that decay over time, play a major role in age determination. A radioactive isotope of the inert gas argon (39Ar), for example, is used to determine the age of water or ice. Such isotopes are extremely rare, however – only a single 39Ar isotope occurs in a thousand trillion argon atoms.


Picture of the apparatus for 39Ar-ATTA

© C. Kaup

Hence researchers’ attempts to isolate and detect such atoms remain the proverbial search for the needle in a haystack. Physicists at Heidelberg University have now succeeded in rendering usable an experimental method developed in basic research for ground water dating using 39Ar. According to the researchers, these results open up new perspectives in investigating glacial ice and deep-water circulation in the ocean. The results of the research were published in the journal “Geophysical Research Letters”.

The most well-known example of age determination using radioactive isotopes is radiocarbon dating, which is used for dating organic material in the environment as well as for archaeological finds. Similarly, the abundance of radioactive isotopes of the inert gases argon and krypton can be used to determine when groundwater, deep ocean water or glacial ice formed.

To detect and isolate the rare atoms from water, innovative experimental methods are used that were developed and perfected in the course of basic research on quantum mechanical systems. Scientists at the Kirchhoff Institute for Physics and the Institute of Environmental Physics at Heidelberg University were now able for the first time to use the method known as Atom Trap Trace Analysis (ATTA) to date groundwater using 39Ar.

Members of the environmental physics working group headed by Prof. Dr. Werner Aeschbach-Hertig first isolated pure argon from over 1,000 litres of groundwater. Using a specially developed ATTA apparatus, the team of Prof. Dr. Markus Oberthaler at the Kirchhoff Institute “trapped” the 39Ar atoms and detected each one.

The scientists underscore that this achievement, which culminates years of joint development work, now opens the door to a multitude of new applications for 39Ar dating. “The project is an outstanding example of how methods developed in basic research of quantum mechanical properties can open up new application horizons,” explains Prof. Oberthaler.

The study’s primary author, Dr. Florian Ritterbusch, is convinced that the measurement method can be made even better: “In principle, a litre of water should be enough for a measurement.” These advances should soon make possible the first measurements of 39Ar in glacial ice in the Alps. The researchers also believe that 39Ar has the greatest potential in the study of deep water circulation in the ocean. “To do that we have to be able to take sufficiently accurate measurements from samples of less than ten litres of water,” says Prof. Aeschbach-Hertig.

The pioneers of the new method from the Argonne National Laboratory in the U.S. organised a special ATTA workshop in Chicago in 2012 to discuss possible applications of krypton isotopes in the earth and environmental sciences. The Heidelberg ATTA collaboration is organising another such gathering to be held in March 2015. The progress made in Heidelberg in working with 39Ar once again considerably broadened the range of applications, as the researchers emphasise.

“The new method also represents an innovative expansion of the strong competence in isotope and dating methods that is present in Heidelberg and concentrated at the Heidelberg Center for the Environment,” says Prof. Aeschbach-Hertig.

Markus Oberthaler directs the Synthetic Quantum Systems working group at the Kirchhoff Institute for Physics. Werner Aeschbach-Hertig is the head of the Aquatic Systems working group at the Institute of Environmental Physics as well as director of the Heidelberg Center for the Environment (HCE).

Original publication:
F. Ritterbusch, S. Ebser, J. Welte, T. Reichel, A. Kersting, R. Purtschert, W. Aeschbach-Hertig, M.K. Oberthaler (2014). Groundwater dating with Atom Trap Trace Analysis of 39Ar. Geophysical Research Letters 41, doi: 10.1002/2014GL061120

Internet information:
http://www.kip.uni-heidelberg.de/matterwaveoptics/research/atta
http://www.hce.uni-heidelberg.de

Contact:
Prof. Dr. Werner Aeschbach-Hertig
Institute of Environmental Physics
Phone +49 6221 54-6331
aeschbach@iup.uni-heidelberg.de

Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>