Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmet-to-helmet collisions: Scientists model how vibrations from football hits wobble the brain

19.10.2012
It's fall football season, when fight songs and shouted play calls fill stadiums across the country. Another less rousing sound sometimes accompanies football games: the sharp crack of helmet-to-helmet collisions.

Hard collisions can lead to player concussions, but the physics of how the impact of a helmet hit transfers to the brain are not well understood. A research team from the U.S. Naval Academy in Annapolis, Md., has created a simplified experimental model of the brain and skull inside a helmet during a helmet-to-helmet collision.

The model illustrates how the fast vibrational motion of the hit translates into a sloshing motion of the brain inside the skull. The researchers will present their findings at the 164th meeting of the Acoustical Society of America (ASA), held Oct. 22 – 26 in Kansas City, Missouri.

Murray Korman, a professor in the physics department at the U.S. Naval Academy, worked with his student Duncan Miller during the course of a semester to develop the experimental model. To simulate a side collision, the researchers hung one helmet from the ceiling with clothesline and swung the second helmet into the first, like a pendulum. Accelerometers mounted on the helmets recorded the vibrations before, during, and after the hit.

Figuring out simple ways to model a human head inside the helmets was a challenge, Korman notes. Human cadavers were out, and crash test mannequins were too expensive. After reading up on skull vibrations, the team settled on a wide plastic hoop, shaped like the skirt of a bell. "They say that when you get hit, you get your bell rung. No pun intended, but your skull does kind of ring like a bell," Korman says.

The researchers modeled the brain as a brass cylinder cushioned in a slot carved out of open-cell foam that mimicked fluid within the brain cavity. By choosing simple materials the researchers minimized the complexity of their set-up while retaining those elements needed to capture the essential motions of the brain and the skull. They found that their brass cylinder brain sloshed back and forth within the skull much more slowly than the rate of vibration of the initial hit. Building a model is important, Korman notes, because it can help determine how a measurable parameter, like the acceleration of a helmet during a hit, would translate into potentially damaging brain motion. "The ultimate damage comes when the brain hits the side of the skull," Korman says.

Korman says there is still a lot of work to do to improve the model. He hopes in the future to collaborate with biophysicists to incorporate more detailed knowledge of the material properties of the brain and skull. Ultimately, the model might be used to test new helmets designed to better protect the brain from hits. Korman describes futuristic helmets that might crumple on impact like plastic car bumpers, leaving the only bell ringing on the field to be done by the marching band.

MORE INFORMATION ABOUT THE 164th ASA MEETING

The Kansas City Marriott Downtown Hotel is located at 200 West 12th Street, Kansas City, Missouri, 64105. The hotel main numbers are: 816-421-6800; fax: 816-855-4418.

USEFUL LINKS

Main meeting website: http://acousticalsociety.org/meetings/kansas_city
Meeting Abstract Database: http://asa.aip.org/asasearch.html
Hotel site: https://resweb.passkey.com/Resweb.do?mode=welcome_ei_new&eventID=8120158
WORLD WIDE PRESS ROOM

ASA's World Wide Press Room contains additional tips about newsworthy stories and with lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio, and video.
PRESS REGISTRATION

ASA will grant free registration to credentialed full-time journalists and professional freelance journalists working on assignment for major news outlets. If you are a reporter and would like to attend, contact Charles E. Blue (cblue@aip.org, 301-209-3091), who can also help with setting up interviews and obtaining images, sound clips, or background information.

This news release was prepared for the Acoustical Society of America (ASA) by the American Institute of Physics (AIP).
ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, ECHOES newsletter, books, and standards on acoustics. The Society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>