Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helicopter-light-beams – a new tool for quantum optics

27.05.2013
A light wave oscillates perpendicular to its propagation direction – that is what students learn in school. However, scientists of the Vienna University of Technology (TU Vienna) now perform atom-physics experiments with light oscillating in the longitudinal direction.

Storing light in a bottle is easier than one might think: Laser light can be coupled into an optical glass fiber in such a way that it does not travel along the fiber but rather spirals around it in a bulged, bottle-like section.


A transversal wave transfers light into a glass fiber, where it is stored in a bottle microresonator. Atoms close to the fiber couple to the light wave. TU Wien


In a glass fiber - with about half the diameter of a human hair - light is kept in place. It cannot escape, because the diameter of the fiber decreases on both sides. TU Wien

In such a bottle microresonator light can be stored for about ten nanoseconds, corresponding to 30,000 revolutions around the fiber. This is long enough to enable interactions between the light and single atoms, which are brought very close to the fiber surface.

Now, scientists at the TU Vienna discovered that in this situation light and matter couple much stronger than previously expected. This surprising result stems from an exceptional property of light inside such microresonators: It oscillates in the longitudinal direction.

Propeller plane or helicopter?

Light waves can oscillate in a fixed direction or twist like a corkscrew. However, for plane light waves, this oscillation - one also speaks of polarization - is always transversal, i.e., perpendicular to its propagation direction. “One can picture this like the propeller of an aircraft: its rotation is always perpendicular to the direction of motion,” explains Prof. Arno Rauschenbeutel (Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, TU Vienna). “However, the light confined in our bottle microresonator also has a longitudinal component, oscillating along the propagation direction. Thus, the light wave rather resembles the rotor of a horizontally flying helicopter. While the tips of the aircraft propeller trace out a corkscrew-like path through space, the trajectories of the tips of the helicopter rotor describe a more complicated trajectory – a so-called cycloid.”
Superposition of waves

The direction of the oscillation is of major importance for the behavior of the light wave. In the bottle microresonator, light can travel clockwise and counterclockwise around the fiber. If the polarization of the two counter-propagating light waves is transverse, they will enhance each other at certain locations while cancelling out in other places. “It is this destructive interference which limits the coupling strength between the light waves and the atoms around the glass fiber,” states Arno Rauschenbeutel.

However, if the two light waves also oscillate along the direction of propagation, their oscillation states will inevitably differ. As a consequence, a complete cancellation of counter-propagating beams by destructive interference is not possible anymore. “Initially, we were really surprised: it was already known before that light can oscillate longitudinally but, up to now, no one considered its importance in the context of light-matter interactions in microresonators,” explains Arno Rauschenbeutel.

Coupling of light and matter

The results from the quantum-optics labs at the TU Vienna could give a new twist to research concerned with longitudinally oscillating light waves in very different scientific fields: Even a focused laser beam in free space has a longitudinal component. “Most importantly for our research, we now understand that our experimental method works much better than expected,” says Arno Rauschenbeutel. “We realize a very strong coupling between light in the glass fiber and single atoms that are situated very close to the fiber.”

This opens up the possibility of constructing extremely sensitive sensors with the ability to detect single atoms with light. Furthermore, bottle microresonators turn out to be ideal tools for studying the fundamental properties of light-matter interactions. The scientists’ next plan is to realize a router for light that is controlled by a single atom and switches light between two output ports. In the future, such a quantum-mechanical router could then be used for interconnecting future quantum computers in optical fiber networks.

Further Information:
Prof. Arno Rauschenbeutel
Institute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
Vienna University of Technology
Stadionallee 2, 1020 Vienna
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v110/i21/e213604 original publication

Dr. Florian Aigner | Technische Universität Wien
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>