Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helicopter-light-beams – a new tool for quantum optics

27.05.2013
A light wave oscillates perpendicular to its propagation direction – that is what students learn in school. However, scientists of the Vienna University of Technology (TU Vienna) now perform atom-physics experiments with light oscillating in the longitudinal direction.

Storing light in a bottle is easier than one might think: Laser light can be coupled into an optical glass fiber in such a way that it does not travel along the fiber but rather spirals around it in a bulged, bottle-like section.


A transversal wave transfers light into a glass fiber, where it is stored in a bottle microresonator. Atoms close to the fiber couple to the light wave. TU Wien


In a glass fiber - with about half the diameter of a human hair - light is kept in place. It cannot escape, because the diameter of the fiber decreases on both sides. TU Wien

In such a bottle microresonator light can be stored for about ten nanoseconds, corresponding to 30,000 revolutions around the fiber. This is long enough to enable interactions between the light and single atoms, which are brought very close to the fiber surface.

Now, scientists at the TU Vienna discovered that in this situation light and matter couple much stronger than previously expected. This surprising result stems from an exceptional property of light inside such microresonators: It oscillates in the longitudinal direction.

Propeller plane or helicopter?

Light waves can oscillate in a fixed direction or twist like a corkscrew. However, for plane light waves, this oscillation - one also speaks of polarization - is always transversal, i.e., perpendicular to its propagation direction. “One can picture this like the propeller of an aircraft: its rotation is always perpendicular to the direction of motion,” explains Prof. Arno Rauschenbeutel (Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, TU Vienna). “However, the light confined in our bottle microresonator also has a longitudinal component, oscillating along the propagation direction. Thus, the light wave rather resembles the rotor of a horizontally flying helicopter. While the tips of the aircraft propeller trace out a corkscrew-like path through space, the trajectories of the tips of the helicopter rotor describe a more complicated trajectory – a so-called cycloid.”
Superposition of waves

The direction of the oscillation is of major importance for the behavior of the light wave. In the bottle microresonator, light can travel clockwise and counterclockwise around the fiber. If the polarization of the two counter-propagating light waves is transverse, they will enhance each other at certain locations while cancelling out in other places. “It is this destructive interference which limits the coupling strength between the light waves and the atoms around the glass fiber,” states Arno Rauschenbeutel.

However, if the two light waves also oscillate along the direction of propagation, their oscillation states will inevitably differ. As a consequence, a complete cancellation of counter-propagating beams by destructive interference is not possible anymore. “Initially, we were really surprised: it was already known before that light can oscillate longitudinally but, up to now, no one considered its importance in the context of light-matter interactions in microresonators,” explains Arno Rauschenbeutel.

Coupling of light and matter

The results from the quantum-optics labs at the TU Vienna could give a new twist to research concerned with longitudinally oscillating light waves in very different scientific fields: Even a focused laser beam in free space has a longitudinal component. “Most importantly for our research, we now understand that our experimental method works much better than expected,” says Arno Rauschenbeutel. “We realize a very strong coupling between light in the glass fiber and single atoms that are situated very close to the fiber.”

This opens up the possibility of constructing extremely sensitive sensors with the ability to detect single atoms with light. Furthermore, bottle microresonators turn out to be ideal tools for studying the fundamental properties of light-matter interactions. The scientists’ next plan is to realize a router for light that is controlled by a single atom and switches light between two output ports. In the future, such a quantum-mechanical router could then be used for interconnecting future quantum computers in optical fiber networks.

Further Information:
Prof. Arno Rauschenbeutel
Institute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
Vienna University of Technology
Stadionallee 2, 1020 Vienna
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v110/i21/e213604 original publication

Dr. Florian Aigner | Technische Universität Wien
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>